scispace - formally typeset
Search or ask a question
Author

Drora Cohen

Bio: Drora Cohen is an academic researcher from Bar-Ilan University. The author has contributed to research in topics: Bicyclobutane & Cyclobutane. The author has an hindex of 14, co-authored 30 publications receiving 948 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an effective fragment model is developed to treat solvent effects on chemical properties and reactions, and formulae are presented that permit the determination of analytic energy gradients and numerically determined energy second derivatives (hessians) for the complete system.
Abstract: An effective fragment model is developed to treat solvent effects on chemical properties and reactions. The solvent, which might consist of discrete water molecules, protein, or other material, is treated explicitly using a model potential that incorporates electrostatics, polarization, and exchange repulsion effects. The solute, which one can most generally envision as including some number of solvent molecules as well, is treated in a fully ab initio manner, using an appropriate level of electronic structure theory. In addition to the fragment model itself, formulae are presented that permit the determination of analytic energy gradients and, therefore, numerically determined energy second derivatives (hessians) for the complete system. Initial tests of the model for the water dimer and water‐formamide are in good agreement with fully ab initio calculations.

565 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic structure of the palladium and platinum homonuclear diatomics (M2) and diatomic hydrides (MH) have been calculated using relativistic effective core potentials in an ab initio multi-configuration self-consistent field framework.
Abstract: The electronic structure of the palladium and platinum homonuclear diatomics (M2) and diatomic hydrides (MH) have been calculated using relativistic effective core potentials in an ab initio multi-configuration self-consistent field framework. Calculated spectroscopic properties (Re and ωe) of the diatomic hydrides are in close agreement with experiment except for the calculated harmonic force constant in PdH. This latter discrepancy is attributed to inaccuracies in the relative energies of the metal atom in the dissociation limit. The calculated M–M and M–H bond strengths follow the expected trend of the Pt atom forming stronger such bonds than Pd. The metal–hydrogen bonding interaction involves primarily the metal nd orbitals for both Pd and Pt, in contrast to NiH where the main metal bonding orbital has been found to be the 4s. On the other hand, as in Ni2, the Pd–Pd bond is essentially a (n + 1)s electron pair bond, while the Pt–Pt bond has a substantial 5d orbital contribution. This quantitative difference between M–M and M–H bonding interactions found for the group VIII transition metals is supported by experimental photoemission energy distribution and difference spectra for the clean metal and hydrogen chemisorbed metal surfaces.

49 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: This chapter discusses the development of DFT as a tool for Calculating Atomic andMolecular Properties and its applications, as well as some of the fundamental and Computational aspects.
Abstract: I. Introduction: Conceptual vs Fundamental andComputational Aspects of DFT1793II. Fundamental and Computational Aspects of DFT 1795A. The Basics of DFT: The Hohenberg−KohnTheorems1795B. DFT as a Tool for Calculating Atomic andMolecular Properties: The Kohn−ShamEquations1796C. Electronic Chemical Potential andElectronegativity: Bridging Computational andConceptual DFT1797III. DFT-Based Concepts and Principles 1798A. General Scheme: Nalewajski’s ChargeSensitivity Analysis1798B. Concepts and Their Calculation 18001. Electronegativity and the ElectronicChemical Potential18002. Global Hardness and Softness 18023. The Electronic Fukui Function, LocalSoftness, and Softness Kernel18074. Local Hardness and Hardness Kernel 18135. The Molecular Shape FunctionsSimilarity 18146. The Nuclear Fukui Function and ItsDerivatives18167. Spin-Polarized Generalizations 18198. Solvent Effects 18209. Time Evolution of Reactivity Indices 1821C. Principles 18221. Sanderson’s Electronegativity EqualizationPrinciple18222. Pearson’s Hard and Soft Acids andBases Principle18253. The Maximum Hardness Principle 1829IV. Applications 1833A. Atoms and Functional Groups 1833B. Molecular Properties 18381. Dipole Moment, Hardness, Softness, andRelated Properties18382. Conformation 18403. Aromaticity 1840C. Reactivity 18421. Introduction 18422. Comparison of Intramolecular ReactivitySequences18443. Comparison of Intermolecular ReactivitySequences18494. Excited States 1857D. Clusters and Catalysis 1858V. Conclusions 1860VI. Glossary of Most Important Symbols andAcronyms1860VII. Acknowledgments 1861VIII. Note Added in Proof 1862IX. References 1865

3,890 citations

Journal ArticleDOI
TL;DR: This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers.

3,467 citations

Journal ArticleDOI
TL;DR: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided in this paper, covering approximately the last seven years, including developments in density functional theory and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces.
Abstract: A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Moller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr_2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.

2,396 citations

Journal ArticleDOI
TL;DR: To model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region and an MM treatment for the surroundings, enabling the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Abstract: Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.

2,172 citations