scispace - formally typeset
Search or ask a question
Author

Duhai Alshukaili

Bio: Duhai Alshukaili is an academic researcher from Higher College of Technology. The author has contributed to research in topics: Goodness of fit & Multicollinearity. The author has an hindex of 1, co-authored 2 publications receiving 20 citations.

Papers
More filters
Journal ArticleDOI
08 Dec 2020
TL;DR: The directional pattern of CO VID-19 cases has moved from northeast to northwest and southwest, with the total impacted region increasing over time, and the results indicate that the rate of COVID-19 infections is higher in the most populated areas.
Abstract: Coronavirus disease (COVID-19), caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a worldwide challenge effecting millions of people in more than 210 countries, including the Sultanate of Oman (Oman). Spatiotemporal analysis was adopted to explore the spatial patterns of the spread of COVID-19 during the period from 29th April to 30th June 2020. Our assessment was made using five geospatial techniques within a Geographical Information System (GIS) context, including a weighted mean centre (WMC), standard deviational ellipses, Moran’s I autocorrelation coefficient, Getis-Ord General-G high/low clustering, and Getis-Ord $$G_{i}^{*}$$ statistic. The Moran’s I-/G- statistics proved that COVID-19 cases in datasets (numbers of cases) were clustered throughout the study period. The Moran’s I and Z scores were above the 2.25 threshold (a confidence level above 95%), ranging from 2274 cases on 29th April to 40,070 cases on 30th June 2020. The results of $$G_{i}^{*}$$ showed varying rates of infections, with a large spatial variability between the different wilayats (district). The epidemic situation in some wilayats, such as Mutrah, As-Seeb, and Bowsher in the Muscat Governorate, was more severe, with Z score higher than 5, and the current transmission still presents an increasing trend. This study indicated that the directional pattern of COVID-19 cases has moved from northeast to northwest and southwest, with the total impacted region increasing over time. Also, the results indicate that the rate of COVID-19 infections is higher in the most populated areas. The findings of this paper provide a solid basis for future study by investigating the most resolute hotspots in more detail and may help decision-makers identify targeted zones for alleviation plans.

44 citations

Journal ArticleDOI
TL;DR: In this article, the authors explored local, bivariate relationships between coronavirus 2019 (COVID-19) infection rates and a set of demographic and socioeconomic variables at the district level in Oman.
Abstract: Local, bivariate relationships between coronavirus 2019 (COVID-19) infection rates and a set of demographic and socioeconomic variables were explored at the district level in Oman. To limit multicollinearity a principal component analysis was conducted, the results of which showed that three components together could explain 65% of the total variance that were therefore subjected to further study. Comparison of a generalized linear model (GLM) and geographically weighted regression (GWR) indicated an improvement in model performance using GWR (goodness of fit=93%) compared to GLM (goodness of fit=86%). The local coefficient of determination (R2) showed a significant influence of specific demographic and socioeconomic factors on COVID-19, including percentages of Omani and non-Omani population at various age levels; spatial interaction; population density; number of hospital beds; total number of households; purchasing power; and purchasing power per km2. No direct correlation between COVID- 19 rates and health facilities distribution or tobacco usage. This study suggests that Poisson regression using GWR and GLM can address unobserved spatial non-stationary relationships. Findings of this study can promote current understanding of the demographic and socioeconomic variables impacting the spatial patterns of COVID-19 in Oman, allowing local and national authorities to adopt more appropriate strategies to cope with this pandemic in the future and also to allocate more effective prevention resources.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a database of the percentage of fully vaccinated people at the county scale across the continental United States as of 29 July 2021, along with social vulnerability index (SVI) data as potential significant covariates were compiled.
Abstract: Vaccine hesitancy refers to delay in acceptance or refusal of vaccines despite the availability of vaccine services. Despite the efforts of United States healthcare providers to vaccinate the bulk of its population, vaccine hesitancy is still a severe challenge that has led to the resurgence of COVID-19 cases to over 100,000 people during early August 2021. To our knowledge, there are limited nationwide studies that examined the spatial distribution of vaccination rates, mainly based on the social vulnerability index (SVI). In this study, we compiled a database of the percentage of fully vaccinated people at the county scale across the continental United States as of 29 July 2021, along with SVI data as potential significant covariates. We further employed multiscale geographically weighted regression to model spatial nonstationarity of vaccination rates. Our findings indicated that the model could explain over 79% of the variance of vaccination rate based on Per capita income and Minority (%) (with positive impacts), and Age 17 and younger (%), Mobile homes (%), and Uninsured people (%) (with negative effects). However, the impact of each covariate varied for different counties due to using separate optimal bandwidths. This timely study can serve as a geospatial reference to support public health decision-makers in forming region-specific policies in monitoring vaccination programs from a geographic perspective.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors assess the growing contribution of the Arab world to global research on COVID-19 and assess hot topics in this area and determine the collaboration patterns between different countries.
Abstract: At the global level and in the Arab world, particularly in low-income countries, COVID-19 remains a major public health issue. As demonstrated by an incredible number of COVID-19-related publications, the research science community responded rapidly. Therefore, this study was intended to assess the growing contribution of the Arab world to global research on COVID-19. For the period between December 2019 and March 2021, the search for publications was conducted via the Scopus database using terms linked to COVID-19. VOSviewer 1.6.16 software was applied to generate a network map to assess hot topics in this area and determine the collaboration patterns between different countries. Furthermore, the research output of Arab countries was adjusted in relation to population size and gross domestic product (GDP). A total of 143,975 publications reflecting the global overall COVID-19 research output were retrieved. By restricting analysis to the publications published by the Arab countries, the research production was 6131 documents, representing 4.26% of the global research output regarding COVID-19. Of all these publications, 3990 (65.08%) were original journal articles, 980 (15.98%) were review articles, 514 (8.38%) were letters and 647 (10.55%) were others, such as editorials or notes. The highest number of COVID-19 publications was published by Saudi Arabia (n = 2186, 35.65%), followed by Egypt (n = 1281, 20.78%) and the United Arab Emirates (UAE), (n = 719, 11.73%). After standardization by population size and GDP, Saudi Arabia, UAE and Lebanon had the highest publication productivity. The collaborations were mostly with researchers from the United States (n = 968), followed by the United Kingdom (n = 661). The main research lines identified in COVID-19 from the Arab world are related to: public health and epidemiology; immunological and pharmaceutical research; signs, symptoms and clinical diagnosis; and virus detection. A novel analysis of the latest Arab COVID-19-related studies is discussed in the current study and how these findings are connected to global production. Continuing and improving future collaboration between developing and developed countries will also help to facilitate the sharing of responsibilities for COVID-19 in research results and the implementation of policies for COVID-19.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the water and electricity consumption in the context of the COVID-19 pandemic across six socioeconomic sectors in Doha city of Qatar using five geospatial techniques in a Geographical Information System (GIS) context.

27 citations

Journal ArticleDOI
27 Aug 2021
TL;DR: This work focuses on the capability of X-TFC in solving inverse problems to estimate the parameters governing the epidemiological compartmental models via a deterministic approach and shows the low computational times, the high accuracy, and effectiveness of the X- TFC method in performing data-driven parameters’ discovery systems modeled via parametric ODEs using unperturbed and perturbed data.
Abstract: In this work, we apply a novel and accurate Physics-Informed Neural Network Theory of Functional Connections (PINN-TFC) based framework, called Extreme Theory of Functional Connections (X-TFC), for data-physics-driven parameters’ discovery of problems modeled via Ordinary Differential Equations (ODEs). The proposed method merges the standard PINNs with a functional interpolation technique named Theory of Functional Connections (TFC). In particular, this work focuses on the capability of X-TFC in solving inverse problems to estimate the parameters governing the epidemiological compartmental models via a deterministic approach. The epidemiological compartmental models treated in this work are Susceptible-Infectious-Recovered (SIR), Susceptible-Exposed-Infectious-Recovered (SEIR), and Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS). The results show the low computational times, the high accuracy, and effectiveness of the X-TFC method in performing data-driven parameters’ discovery systems modeled via parametric ODEs using unperturbed and perturbed data.

26 citations

Journal ArticleDOI
TL;DR: In this paper , a systematic literature review of papers indexed on the Web of Science and Scopus was conducted to find out how the built environment and human factors have affected the transmission of COVID-19 on different scales, including country, state, county, city, and urban district.

25 citations