scispace - formally typeset
Search or ask a question

Showing papers by "Dumitru Erhan published in 2010"


Journal Article
TL;DR: In this paper, the authors empirically show the influence of pre-training with respect to architecture depth, model capacity, and number of training examples, and they suggest that unsupervised pretraining guides the learning towards basins of attraction of minima that support better generalization.
Abstract: Much recent research has been devoted to learning algorithms for deep architectures such as Deep Belief Networks and stacks of auto-encoder variants, with impressive results obtained in several areas, mostly on vision and language data sets. The best results obtained on supervised learning tasks involve an unsupervised learning component, usually in an unsupervised pre-training phase. Even though these new algorithms have enabled training deep models, many questions remain as to the nature of this difficult learning problem. The main question investigated here is the following: how does unsupervised pre-training work? Answering this questions is important if learning in deep architectures is to be further improved. We propose several explanatory hypotheses and test them through extensive simulations. We empirically show the influence of pre-training with respect to architecture depth, model capacity, and number of training examples. The experiments confirm and clarify the advantage of unsupervised pre-training. The results suggest that unsupervised pre-training guides the learning towards basins of attraction of minima that support better generalization from the training data set; the evidence from these results supports a regularization explanation for the effect of pre-training.

2,036 citations



Posted Content
TL;DR: It is shown that deep learners benefit more from out-of-distribution examples than a corresponding shallow learner, at least in the area of handwritten character recognition.
Abstract: Recent theoretical and empirical work in statistical machine learning has demonstrated the importance of learning algorithms for deep architectures, i.e., function classes obtained by composing multiple non-linear transformations. Self-taught learning (exploiting unlabeled examples or examples from other distributions) has already been applied to deep learners, but mostly to show the advantage of unlabeled examples. Here we explore the advantage brought by out-of-distribution examples. For this purpose we developed a powerful generator of stochastic variations and noise processes for character images, including not only affine transformations but also slant, local elastic deformations, changes in thickness, background images, grey level changes, contrast, occlusion, and various types of noise. The out-of-distribution examples are obtained from these highly distorted images or by including examples of object classes different from those in the target test set. We show that deep learners benefit more from out-of-distribution examples than a corresponding shallow learner, at least in the area of handwritten character recognition. In fact, we show that they beat previously published results and reach human-level performance on both handwritten digit classification and 62-class handwritten character recognition.

17 citations