scispace - formally typeset
Search or ask a question
Author

Duncan J. Macquarrie

Bio: Duncan J. Macquarrie is an academic researcher from University of York. The author has contributed to research in topics: Catalysis & Mesoporous material. The author has an hindex of 53, co-authored 239 publications receiving 10273 citations. Previous affiliations of Duncan J. Macquarrie include Comenius University in Bratislava & Polytechnic University of Turin.


Papers
More filters
Journal ArticleDOI
TL;DR: This tutorial review presents an introduction to the field of supported metal nanoparticles (SMNPs) on porous materials, focusing on their preparation and applications in different areas.
Abstract: Nanoparticles are regarded as a major step forward to achieving the miniaturisation and nanoscaling effects and properties that have been utilised by nature for millions of years. The chemist is no longer observing and describing the behaviour of matter but is now able to manipulate and produce new types of materials with specific desired physicochemical characteristics. Such materials are receiving extensive attention across a broad range of research disciplines. The fusion between nanoparticle and nanoporous materials technology represents one of the most interesting of these rapidly expanding areas. The harnessing of nanoscale activity and selectivity, potentially provides extremely efficient catalytic materials for the production of commodity chemicals, and energy needed for a future sustainable society. In this tutorial review, we present an introduction to the field of supported metal nanoparticles (SMNPs) on porous materials, focusing on their preparation and applications in different areas.

1,058 citations

Journal ArticleDOI
TL;DR: Very stable organically modified MCMs are prepared by a simple one-step procedure from readily available starting materials as mentioned in this paper, which can be used to build a stable MCM from a simple starting material.

384 citations

Journal ArticleDOI
TL;DR: This tutorial review compares and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of the previously reported mesoporous polysaccharide-derived "Starbon" carbonaceous material technology.
Abstract: Porous carbon materials are ubiquitous with a wide range of technologically important applications, including separation science, heterogeneous catalyst supports, water purification filters, stationary phase materials, as well as the developing future areas of energy generation and storage applications. Hard template routes to ordered mesoporous carbons are well established, but whilst offering different mesoscopic textural phases, the surface of the material is difficult to chemically post-modify and processing is energy, resource and step intensive. The production of carbon materials from biomass (i.e.sugars or polysaccharides) is a relatively new but rapidly expanding research area. In this tutorial review, we compare and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of our previously reported mesoporous polysaccharide-derived “Starbon®” carbonaceous material technology.

359 citations

Journal ArticleDOI
TL;DR: In this article, the methods available for the preparation of hybrid organic-inorganic materials are reviewed, as well as their applications as catalysts in a range of reactions in heterogeneous catalysis and green chemistry.

309 citations

Journal ArticleDOI
TL;DR: Research into renewable bioresources at York and elsewhere is demonstrating that by applying green chemical technologies to the transformation of typically low value and widely available biomass feedstocks, including wastes, we can build up new environmentally compatible and sustainable chemicals and materials industries for the 21st century.

288 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An updated evaluation of potential target structures using similar selection methodology, and an overview of the technology developments that led to the inclusion of a given compound are presented.

3,536 citations

Journal ArticleDOI
TL;DR: A critical review of adsorption methods that are currently used in the characterization of ordered organic−inorganic nanocomposite materials is presented in this paper, where the authors compare and evaluate the available methods for mesopore size analysis.
Abstract: A critical review of adsorption methods that are currently used in the characterization of ordered organic−inorganic nanocomposite materials is presented, and the adsorption methodology that is potentially useful for this characterization, but has not yet been applied, is discussed. The ordered organic−inorganic nanocomposites include surface-functionalized ordered mesoporous materials (OMMs) with siliceous frameworks (synthesized either via postsynthesis surface modification or via direct co-condensation method), periodic mesoporous organosilicas, and surfactant-containing OMMs. This review covers the methods for determination of the specific surface area and pore volume. The available methods for mesopore size analysis are critically compared and evaluated, with special emphasis on the recent developments related to the application of advanced computational methods for studying adsorption in porous media and to the direct modeling of adsorption using highly ordered surface-functionalized OMMs as model a...

2,987 citations

Journal ArticleDOI
TL;DR: In this paper, a review of cost effective technologies and the processes to convert biomass into useful liquid bio-fuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.
Abstract: Sustainable economic and industrial growth requires safe, sustainable resources of energy. For the future re-arrangement of a sustainable economy to biological raw materials, completely new approaches in research and development, production, and economy are necessary. The ‘first-generation’ biofuels appear unsustainable because of the potential stress that their production places on food commodities. For organic chemicals and materials these needs to follow a biorefinery model under environmentally sustainable conditions. Where these operate at present, their product range is largely limited to simple materials (i.e. cellulose, ethanol, and biofuels). Second generation biorefineries need to build on the need for sustainable chemical products through modern and proven green chemical technologies such as bioprocessing including pyrolysis, Fisher Tropsch, and other catalytic processes in order to make more complex molecules and materials on which a future sustainable society will be based. This review focus on cost effective technologies and the processes to convert biomass into useful liquid biofuels and bioproducts, with particular focus on some biorefinery concepts based on different feedstocks aiming at the integral utilization of these feedstocks for the production of value added chemicals.

2,814 citations

Journal ArticleDOI
TL;DR: The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.
Abstract: Interest in catalysis by metal nanoparticles (NPs) is increasing dramatically, as reflected by the large number of publications in the last five years. This field, "semi-heterogeneous catalysis", is at the frontier between homogeneous and heterogeneous catalysis, and progress has been made in the efficiency and selectivity of reactions and recovery and recyclability of the catalytic materials. Usually NP catalysts are prepared from a metal salt, a reducing agent, and a stabilizer and are supported on an oxide, charcoal, or a zeolite. Besides the polymers and oxides that used to be employed as standard, innovative stabilizers, media, and supports have appeared, such as dendrimers, specific ligands, ionic liquids, surfactants, membranes, carbon nanotubes, and a variety of oxides. Ligand-free procedures have provided remarkable results with extremely low metal loading. The Review presents the recent developments and the use of NP catalysis in organic synthesis, for example, in hydrogenation and C--C coupling reactions, and the heterogeneous oxidation of CO on gold NPs.

2,790 citations