scispace - formally typeset
Search or ask a question

Showing papers by "Duncan J. Watts published in 1999"


Book
23 Aug 1999
TL;DR: Duncan Watts uses the small-world phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network?
Abstract: Everyone knows the small-world phenomenon: soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are connected through a short chain of acquaintances. In his book, Duncan Watts uses this intriguing phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network?The networks of this story are everywhere: the brain is a network of neurons; organisations are people networks; the global economy is a network of national economies, which are networks of markets, which are in turn networks of interacting producers and consumers. Food webs, ecosystems, and the Internet can all be represented as networks, as can strategies for solving a problem, topics in a conversation, and even words in a language. Many of these networks, the author claims, will turn out to be small worlds.How do such networks matter? Simply put, local actions can have global consequences, and the relationship between local and global dynamics depends critically on the network's structure. Watts illustrates the subtleties of this relationship using a variety of simple models---the spread of infectious disease through a structured population; the evolution of cooperation in game theory; the computational capacity of cellular automata; and the sychronisation of coupled phase-oscillators.Watts's novel approach is relevant to many problems that deal with network connectivity and complex systems' behaviour in general: How do diseases (or rumours) spread through social networks? How does cooperation evolve in large groups? How do cascading failures propagate through large power grids, or financial systems? What is the most efficient architecture for an organisation, or for a communications network? This fascinating exploration will be fruitful in a remarkable variety of fields, including physics and mathematics, as well as sociology, economics, and biology.

2,404 citations


Journal ArticleDOI
TL;DR: The small‐world phenomenon, formalized in this article as the coincidence of high local clustering and short global separation, is shown to be a general feature of sparse, decentralized networks that are neither completely ordered nor completely random.
Abstract: The small‐world phenomenon formalized in this article as the coincidence of high local clustering and short global separation, is shown to be a general feature of sparse, decentralized networks that are neither completely ordered nor completely random. Networks of this kind have received little attention, yet they appear to be widespread in the social and natural sciences, as is indicated here by three distinct examples. Furthermore, small admixtures of randomness to an otherwise ordered network can have a dramatic impact on its dynamical, as well as structural, properties‐a feature illustrated by a simple model of disease transmission.

1,410 citations


Journal ArticleDOI
TL;DR: It is contended that the small-world network model displays a normal continuous phase transition with a divergent correlation length as the degree of randomness tends to zero, and a real-space renormalization group transformation is proposed and demonstrated that it is exact in the limit of large system size.

1,202 citations


Journal ArticleDOI
TL;DR: There is one nontrivial length-scale in the small-world network model of Watts and Strogatz, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit.
Abstract: In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.

1,106 citations


Journal ArticleDOI
TL;DR: In this paper, a real-space renormalization group transformation for the model is proposed and the scaling form for the average number of degrees of separation between two nodes on the network as a function of the three independent variables is derived.
Abstract: We study the small-world network model, which mimics the transition between regular-lattice and random-lattice behavior in social networks of increasing size. We contend that the model displays a normal continuous phase transition with a divergent correlation length as the degree of randomness tends to zero. We propose a real-space renormalization group transformation for the model and demonstrate that the transformation is exact in the limit of large system size. We use this result to calculate the exact value of the single critical exponent for the system, and to derive the scaling form for the average number of "degrees of separation" between two nodes on the network as a function of the three independent variables. We confirm our results by extensive numerical simulation.

1,076 citations



Posted Content
TL;DR: In this paper, a real-space renormalization group transformation is proposed for the small-world network model, which mimics the transition between regular and random-lattice behavior in social networks of increasing size.
Abstract: We study the small-world network model, which mimics the transition between regular-lattice and random-lattice behavior in social networks of increasing size. We contend that the model displays a normal continuous phase transition with a divergent correlation length as the degree of randomness tends to zero. We propose a real-space renormalization group transformation for the model and demonstrate that the transformation is exact in the limit of large system size. We use this result to calculate the exact value of the single critical exponent for the system, and to derive the scaling form for the average number of "degrees of separation" between two nodes on the network as a function of the three independent variables. We confirm our results by extensive numerical simulation. Appears in Phys. Lett. A 263, 341-346 (1999).

5 citations


Posted Content
TL;DR: In this paper, the authors presented a mean-field solution for the average path length and for the distribution of path lengths in the small-world network model, which is exact in the limit of large system size and either large or small number of shortcuts.
Abstract: The small-world network model is a simple model of the structure of social networks, which simultaneously possesses characteristics of both regular lattices and random graphs. The model consists of a one-dimensional lattice with a low density of shortcuts added between randomly selected pairs of points. These shortcuts greatly reduce the typical path length between any two points on the lattice. We present a mean-field solution for the average path length and for the distribution of path lengths in the model. This solution is exact in the limit of large system size and either large or small number of shortcuts.

3 citations