scispace - formally typeset
D

Duncan J. Watts

Researcher at University of Pennsylvania

Publications -  151
Citations -  91960

Duncan J. Watts is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Randomness & Small-world network. The author has an hindex of 62, co-authored 146 publications receiving 83816 citations. Previous affiliations of Duncan J. Watts include Cornell University & Microsoft.

Papers
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Journal ArticleDOI

Random graphs with arbitrary degree distributions and their applications.

TL;DR: It is demonstrated that in some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the behavior of the real world, while in others there is a measurable discrepancy between theory and reality, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.
BookDOI

The structure and dynamics of networks

TL;DR: The degree distribution, twopoint correlations, and clustering are the studied topological properties and an evolution of networks is studied to shed light on the influence the dynamics has on the network topology.
Journal ArticleDOI

A simple model of global cascades on random networks

TL;DR: It is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but anincreasingly heterogeneous degree distribution makes it less vulnerable.
Book

Small Worlds: The Dynamics of Networks between Order and Randomness

TL;DR: Duncan Watts uses the small-world phenomenon--colloquially called "six degrees of separation"--as a prelude to a more general exploration: under what conditions can a small world arise in any kind of network?