scispace - formally typeset
Search or ask a question
Author

Dushan Boroyevich

Other affiliations: University of Virginia
Bio: Dushan Boroyevich is an academic researcher from Virginia Tech. The author has contributed to research in topics: Power electronics & Converters. The author has an hindex of 60, co-authored 522 publications receiving 14694 citations. Previous affiliations of Dushan Boroyevich include University of Virginia.


Papers
More filters
Journal ArticleDOI
Dong Dong1, Igor Cvetkovic1, Dushan Boroyevich1, Wei Zhang1, Ruxi Wang1, Paolo Mattavelli1 
TL;DR: In this article, a two-stage topology using a full bridge in series with a bidirectional synchronous rectifier dc-dc converter as a single-phase ECC for dc nanogrid was investigated.
Abstract: With the emerging installations of multitype renewable energy sources and energy storage elements, the dc electronic distribution systems in residential buildings (dc nanogrid) are becoming an alternative future system solution, achieving a zero net-energy consumption and optimized power management. The concept of the energy control center (ECC), which interconnects the dc system to the traditional ac utility grid, is introduced, and the operation function of ECC converter suitable for dc nanogrid application is defined. This paper investigates a two-stage topology using a full bridge in series with a bidirectional synchronous rectifier dc–dc converter as a single-phase ECC for dc nanogrid, with a significant reduction of the dc-link capacitor value. The operation analysis and the design of passive components are provided. A bidirectional control system and the design process are also presented in terms of the system requirement and the small dc-link capacitor.

245 citations

Journal ArticleDOI
TL;DR: In this article, the impact of interleaving on harmonic currents and voltages on the ac side of paralleled three-phase voltage-source converters was analyzed, considering the effects of modulation index, pulsewidth-modulation (PWM) schemes, and interleave angle.
Abstract: This paper presents a comprehensive analysis studying the impact of interleaving on harmonic currents and voltages on the ac side of paralleled three-phase voltage-source converters. The analysis performed considers the effects of modulation index, pulsewidth-modulation (PWM) schemes, and interleaving angle. Based on the analysis, the impact of interleaving on the design of ac passive components, such as ac line inductor and electromagnetic interference (EMI) filter, is discussed. The results show that interleaving has the potential benefit to reduce ac passive components. To maximize such a benefit, the interleaving angle should be optimized according to the system requirements, including total harmonic distortion limit, ripple limit, or EMI standards, while considering operating conditions, such as modulation index and PWM schemes. Experimental results have verified the analysis results.

245 citations

Journal ArticleDOI
TL;DR: In this paper, a high-temperature, high-frequency, wire-bond-based multichip phase-leg module was designed, fabricated, and fully tested using paralleled Silicon Carbide (SiC) MOSFETs.
Abstract: In this paper, a high-temperature, high-frequency, wire-bond-based multichip phase-leg module was designed, fabricated, and fully tested. Using paralleled Silicon Carbide (SiC) MOSFETs, the module was rated at 1200 V and 60 A, and was designed for a 25-kW three-phase inverter operating at a switching frequency of 70 kHz, and in a harsh environment up to 200 °C, for aircraft applications. To this end, the temperature-dependent characteristics of the SiC MOSFET were first evaluated. The results demonstrated the superiority of the SiC MOSFET in both static and switching performances compared to Si devices, but meanwhile did reveal the design tradeoff in terms of the device's gate oxide stability. Various high-temperature packaging materials were then extensively surveyed and carefully selected for the module to sustain the harsh environment. The electrical layout of the module was also optimized using a modeling and simulation approach, in order to minimize the device parasitic ringing during high-speed switching. Finally, the static and switching performances of the fabricated module were tested, and the 200 °C continuous operation of the SiC MOSFETs was verified.

232 citations

Journal ArticleDOI
TL;DR: In this paper, a systematic evaluation approach of three-phase pulsewidth-modulated (PWM) AC-AC converter topologies for high-density applications is presented, where all major components and subsystems in a converter are considered and the interdependence of all the constraints and design parameters is systematically studied.
Abstract: This paper presents a systematic evaluation approach of three-phase pulsewidth-modulated (PWM) AC-AC converter topologies for high-density applications. All major components and subsystems in a converter are considered and the interdependence of all the constraints and design parameters is systematically studied. The key design parameters, including switching frequency, modulation scheme, and passive values, are selected by considering their impacts on loss, harmonics, electromagnetic interference (EMI), control dynamics and stability, and protection. The component selection criteria as well as the physical design procedures are developed from the high-density standpoint. The concept of using the same inductor for harmonic suppression and EMI filtering is introduced in the design. With the proposed methodology, four converter topologies, a back-to-back voltage source converter (BTB-VSC), a nonregenerative three-level boost (Vienna-type) rectifier plus voltage source inverter (NTR-VSI), a back-to-back current source converter (BTB-CSC), and a 12-switch matrix converter, are analyzed and compared for high specific power using SiC devices. The evaluation results show that with the conditions specified in this paper, BTB-VSC and NTR-VSI have considerably lower loss, resulting in higher specific power than BTB-CSC and the matrix converter. The proposed methodology can be applied to other topologies with different comparison metrics and can be a useful tool for high-density topology selection.

207 citations

Proceedings ArticleDOI
21 Jun 2010
TL;DR: A guideline has been established for the layout and design of high-speed switching circuits based on the results obtained in an experimental parametric study of the parasitic waveform ringing, switching loss, device stress, and electromagnetic interference.
Abstract: This paper presents an experimental parametric study of the parasitic indu waveform ringing, switching loss, device stress, and electromagnetic interference. Based on the results obtained, a guideline has been established for the layout and design of high-speed switching circuits.

205 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: An overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines is given and the possibility of compensation for low-order harmonics is discussed.
Abstract: Renewable energy sources like wind, sun, and hydro are seen as a reliable alternative to the traditional energy sources such as oil, natural gas, or coal. Distributed power generation systems (DPGSs) based on renewable energy sources experience a large development worldwide, with Germany, Denmark, Japan, and USA as leaders in the development in this field. Due to the increasing number of DPGSs connected to the utility network, new and stricter standards in respect to power quality, safe running, and islanding protection are issued. As a consequence, the control of distributed generation systems should be improved to meet the requirements for grid interconnection. This paper gives an overview of the structures for the DPGS based on fuel cell, photovoltaic, and wind turbines. In addition, control structures of the grid-side converter are presented, and the possibility of compensation for low-order harmonics is also discussed. Moreover, control strategies when running on grid faults are treated. This paper ends up with an overview of synchronization methods and a discussion about their importance in the control

4,655 citations

Journal ArticleDOI
01 Nov 2009
TL;DR: The hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to MGs is presented and results are provided to show the feasibility of the proposed approach.
Abstract: DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchical-controlled microgrid are provided to show the feasibility of the proposed approach.

4,145 citations

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations