scispace - formally typeset
Search or ask a question
Author

Duy K. Dao

Other affiliations: University of Connecticut
Bio: Duy K. Dao is an academic researcher from Worcester Polytechnic Institute. The author has contributed to research in topics: Noise Artifact & Photoplethysmogram. The author has an hindex of 7, co-authored 8 publications receiving 304 citations. Previous affiliations of Duy K. Dao include University of Connecticut.

Papers
More filters
Journal ArticleDOI
23 Dec 2015-Sensors
TL;DR: The results show that the SpaMA method has a potential for PPG-based HR monitoring in wearable devices for fitness tracking and health monitoring during intense physical activities and dynamics of heart rate variability can be accurately captured.
Abstract: Accurate estimation of heart rates from photoplethysmogram (PPG) signals during intense physical activity is a very challenging problem. This is because strenuous and high intensity exercise can result in severe motion artifacts in PPG signals, making accurate heart rate (HR) estimation difficult. In this study we investigated a novel technique to accurately reconstruct motion-corrupted PPG signals and HR based on time-varying spectral analysis. The algorithm is called Spectral filter algorithm for Motion Artifacts and heart rate reconstruction (SpaMA). The idea is to calculate the power spectral density of both PPG and accelerometer signals for each time shift of a windowed data segment. By comparing time-varying spectra of PPG and accelerometer data, those frequency peaks resulting from motion artifacts can be distinguished from the PPG spectrum. The SpaMA approach was applied to three different datasets and four types of activities: (1) training datasets from the 2015 IEEE Signal Process. Cup Database recorded from 12 subjects while performing treadmill exercise from 1 km/h to 15 km/h; (2) test datasets from the 2015 IEEE Signal Process. Cup Database recorded from 11 subjects while performing forearm and upper arm exercise. (3) Chon Lab dataset including 10 min recordings from 10 subjects during treadmill exercise. The ECG signals from all three datasets provided the reference HRs which were used to determine the accuracy of our SpaMA algorithm. The performance of the SpaMA approach was calculated by computing the mean absolute error between the estimated HR from the PPG and the reference HR from the ECG. The average estimation errors using our method on the first, second and third datasets are 0.89, 1.93 and 1.38 beats/min respectively, while the overall error on all 33 subjects is 1.86 beats/min and the performance on only treadmill experiment datasets (22 subjects) is 1.11 beats/min. Moreover, it was found that dynamics of heart rate variability can be accurately captured using the algorithm where the mean Pearson’s correlation coefficient between the power spectral densities of the reference and the reconstructed heart rate time series was found to be 0.98. These results show that the SpaMA method has a potential for PPG-based HR monitoring in wearable devices for fitness tracking and health monitoring during intense physical activities.

147 citations

Journal ArticleDOI
TL;DR: The accuracy and error values of the proposed MNA detection method were significantly higher and lower, respectively, than all other detection methods, and it is able to provide highly accurate onset and offset detection times of MNAs.
Abstract: Motion and noise artifacts (MNA) are a serious obstacle in utilizing photoplethysmogram (PPG) signals for real-time monitoring of vital signs. We present a MNA detection method which can provide a clean vs. corrupted decision on each successive PPG segment. For motion artifact detection, we compute four time-domain parameters: (1) standard deviation of peak-to-peak intervals (2) standard deviation of peak-to-peak amplitudes (3) standard deviation of systolic and diastolic interval ratios, and (4) mean standard deviation of pulse shape. We have adopted a support vector machine (SVM) which takes these parameters from clean and corrupted PPG signals and builds a decision boundary to classify them. We apply several distinct features of the PPG data to enhance classification performance. The algorithm we developed was verified on PPG data segments recorded by simulation, laboratory-controlled and walking/stair-climbing experiments, respectively, and we compared several well-established MNA detection methods to our proposed algorithm. All compared detection algorithms were evaluated in terms of motion artifact detection accuracy, heart rate (HR) error, and oxygen saturation (SpO2) error. For laboratory controlled finger, forehead recorded PPG data and daily-activity movement data, our proposed algorithm gives 94.4, 93.4, and 93.7% accuracies, respectively. Significant reductions in HR and SpO2 errors (2.3 bpm and 2.7%) were noted when the artifacts that were identified by SVM-MNA were removed from the original signal than without (17.3 bpm and 5.4%). The accuracy and error values of our proposed method were significantly higher and lower, respectively, than all other detection methods. Another advantage of our method is its ability to provide highly accurate onset and offset detection times of MNAs. This capability is important for an automated approach to signal reconstruction of only those data points that need to be reconstructed, which is the subject of the companion paper to this article. Finally, our MNA detection algorithm is real-time realizable as the computational speed on the 7-s PPG data segment was found to be only 7 ms with a Matlab code.

69 citations

Journal ArticleDOI
TL;DR: An approach based on using the time–frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the nonusable part of the corrupted data, which consistently provided higher detection rates than the other three methods, with accuracies greater than 95% for all data.
Abstract: Motion and noise artifacts (MNAs) impose limits on the usability of the photoplethysmogram (PPG), particularly in the context of ambulatory monitoring. MNAs can distort PPG, causing erroneous estimation of physiological parameters such as heart rate (HR) and arterial oxygen saturation (SpO2). In this study, we present a novel approach, “TifMA,” based on using the time–frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the nonusable part of the corrupted data. The term “nonusable” refers to segments of PPG data from which the HR signal cannot be recovered accurately. Two sequential classification procedures were included in the TifMA algorithm. The first classifier distinguishes between MNA-corrupted and MNA-free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier determines whether the HR can be recovered from the corrupted segment or not. A support vector machine (SVM) classifier was used to build a decision boundary for the first classification task using data segments from a training dataset. Features from time–frequency spectra of PPG were extracted to build the detection model. Five datasets were considered for evaluating TifMA performance: (1) and (2) were laboratory-controlled PPG recordings from forehead and finger pulse oximeter sensors with subjects making random movements, (3) and (4) were actual patient PPG recordings from UMass Memorial Medical Center with random free movements and (5) was a laboratory-controlled PPG recording dataset measured at the forehead while the subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the algorithm. Datasets 2-4 were used to evaluate the MNA detection phase of the algorithm. The results from the first phase of the algorithm (MNA detection) were compared to results from three existing MNA detection algorithms: the Hjorth, kurtosis-Shannon entropy, and time-domain variability-SVM approaches. This last is an approach recently developed in our laboratory. The proposed TifMA algorithm consistently provided higher detection rates than the other three methods, with accuracies greater than 95% for all data. Moreover, our algorithm was able to pinpoint the start and end times of the MNA with an error of less than 1 s in duration, whereas the next-best algorithm had a detection error of more than 2.2 s. The final, most challenging, dataset was collected to verify the performance of the algorithm in discriminating between corrupted data that were usable for accurate HR estimations and data that were nonusable. It was found that on average 48% of the data segments were found to have MNA, and of these, 38% could be used to provide reliable HR estimation.

67 citations

Journal ArticleDOI
TL;DR: It is shown that the proposed IMAR approach can reliably reconstruct MNA corrupted data segments, as the estimated HR and SpO2 values do not significantly deviate from the uncorrupted reference measurements.
Abstract: We introduce a new method to reconstruct motion and noise artifact (MNA) contaminated photoplethysmogram (PPG) data. A method to detect MNA corrupted data is provided in a companion paper. Our reconstruction algorithm is based on an iterative motion artifact removal (IMAR) approach, which utilizes the singular spectral analysis algorithm to remove MNA artifacts so that the most accurate estimates of uncorrupted heart rates (HRs) and arterial oxygen saturation (SpO2) values recorded by a pulse oximeter can be derived. Using both computer simulations and three different experimental data sets, we show that the proposed IMAR approach can reliably reconstruct MNA corrupted data segments, as the estimated HR and SpO2 values do not significantly deviate from the uncorrupted reference measurements. Comparison of the accuracy of reconstruction of the MNA corrupted data segments between our IMAR approach and the time-domain independent component analysis (TD-ICA) is made for all data sets as the latter method has been shown to provide good performance. For simulated data, there were no significant differences in the reconstructed HR and SpO2 values starting from 10 dB down to −15 dB for both white and colored noise contaminated PPG data using IMAR; for TD-ICA, significant differences were observed starting at 10 dB. Two experimental PPG data sets were created with contrived MNA by having subjects perform random forehead and rapid side-to-side finger movements show that; the performance of the IMAR approach on these data sets was quite accurate as non-significant differences in the reconstructed HR and SpO2 were found compared to non-contaminated reference values, in most subjects. In comparison, the accuracy of the TD-ICA was poor as there were significant differences in reconstructed HR and SpO2 values in most subjects. For non-contrived MNA corrupted PPG data, which were collected with subjects performing walking and stair climbing tasks, the IMAR significantly outperformed TD-ICA as the former method provided HR and SpO2 values that were non-significantly different than MNA free reference values.

54 citations

Proceedings ArticleDOI
06 May 2013
TL;DR: Pilot findings provided a proof of concept to support the hypothesis that photoplethysmograms acquired concurrently from independent channels in a multi-channel pulse oximeter sensor respond differently to motion artifacts, thus laying the foundation for future development of robust active noise cancellation and data fusion based algorithms to mitigate the effects of motion artifacts.
Abstract: Pulse oximetry is a widely accepted clinical method for noninvasive monitoring of arterial oxygen saturation and pulse rate. Significant improvements aimed at curbing motion artifacts and improving reliability in detecting sufficiently strong photoplethysmographic signals are required to reduce errant measurements before the pulse oximeter can be considered for wider mobile applications. The present work describes the development of a wearable multi-channel reflectance pulse oximeter to investigate if a motion artifact-free signal can be obtained in at least one of the multichannels at any given time. Pilot findings provided a proof of concept to support the hypothesis that photoplethysmograms acquired concurrently from independent channels in a multi-channel pulse oximeter sensor respond differently to motion artifacts, thus laying the foundation for future development of robust active noise cancellation and data fusion based algorithms to mitigate the effects of motion artifacts.

25 citations


Cited by
More filters
Journal ArticleDOI
25 Jul 2018-Sensors
TL;DR: This paper reviews important aspects in the WHDs area, listing the state-of-the-art of wearable vital signs sensing technologies plus their system architectures and specifications plus a resumed evolution of these devices based on the prototypes developed along the years.
Abstract: Wearable Health Devices (WHDs) are increasingly helping people to better monitor their health status both at an activity/fitness level for self-health tracking and at a medical level providing more data to clinicians with a potential for earlier diagnostic and guidance of treatment. The technology revolution in the miniaturization of electronic devices is enabling to design more reliable and adaptable wearables, contributing for a world-wide change in the health monitoring approach. In this paper we review important aspects in the WHDs area, listing the state-of-the-art of wearable vital signs sensing technologies plus their system architectures and specifications. A focus on vital signs acquired by WHDs is made: first a discussion about the most important vital signs for health assessment using WHDs is presented and then for each vital sign a description is made concerning its origin and effect on heath, monitoring needs, acquisition methods and WHDs and recent scientific developments on the area (electrocardiogram, heart rate, blood pressure, respiration rate, blood oxygen saturation, blood glucose, skin perspiration, capnography, body temperature, motion evaluation, cardiac implantable devices and ambient parameters). A general WHDs system architecture is presented based on the state-of-the-art. After a global review of WHDs, we zoom in into cardiovascular WHDs, analysing commercial devices and their applicability versus quality, extending this subject to smart t-shirts for medical purposes. Furthermore we present a resumed evolution of these devices based on the prototypes developed along the years. Finally we discuss likely market trends and future challenges for the emerging WHDs area.

531 citations

Patent
Ammar Al-Ali1
13 Nov 2007
TL;DR: In this article, a pulse oximeter may reduce power consumption in the absence of overriding conditions, such as high noise conditions or oxygen desaturations, without sacrificing performance during high temperature conditions.
Abstract: A pulse oximeter may reduce power consumption in the absence of overriding conditions. Various sampling mechanisms may be used individually or in combination. Various parameters may be monitored to trigger or override a reduced power consumption state. In this manner, a pulse oximeter can lower power consumption without sacrificing performance during, for example, high noise conditions or oxygen desaturations.

492 citations

Journal ArticleDOI
TL;DR: The proposed WFPV HR estimation algorithm has a low computational cost and can be used for fitness tracking and health monitoring in wearable devices and in contrast to existing alternatives has very few free parameters to tune.
Abstract: Objective : The challenging task of heart rate (HR) estimation from the photoplethysmographic (PPG) signal, during intensive physical exercises, is tackled in this paper. Methods: The study presents a detailed analysis of a novel algorithm (WFPV) that exploits a Wiener filter to attenuate the motion artifacts, a phase vocoder to refine the HR estimate and user-adaptive post-processing to track the subject physiology. Additionally, an offline version of the HR estimation algorithm that uses Viterbi decoding is designed for scenarios that do not require online HR monitoring (WFPV+VD). The performance of the HR estimation systems is rigorously compared with existing algorithms on the publically available database of 23 PPG recordings. Results: On the whole dataset of 23 PPG recordings, the algorithms result in average absolute errors of 1.97 and 1.37 BPM in the online and offline modes, respectively. On the test dataset of 10 PPG recordings which were most corrupted with motion artifacts, WFPV has an error of 2.95 BPM on its own and 2.32 BPM in an ensemble with two existing algorithms. Conclusion: The error rate is significantly reduced when compared with the state-of-the art PPG-based HR estimation methods. Significance : The proposed system is shown to be accurate in the presence of strong motion artifacts and in contrast to existing alternatives has very few free parameters to tune. The algorithm has a low computational cost and can be used for fitness tracking and health monitoring in wearable devices. The MATLAB implementation of the algorithm is provided online.

189 citations

Journal ArticleDOI
12 Jul 2019-Sensors
TL;DR: The end-to-end learning approach takes the time-frequency spectra of synchronised PPG- and accelerometer-signals as input, and provides the estimated heart rate as output, and shows that on large datasets the deep learning model significantly outperforms other methods.
Abstract: Photoplethysmography (PPG)-based continuous heart rate monitoring is essential in a number of domains, eg, for healthcare or fitness applications Recently, methods based on time-frequency spectra emerged to address the challenges of motion artefact compensation However, existing approaches are highly parametrised and optimised for specific scenarios of small, public datasets We address this fragmentation by contributing research into the robustness and generalisation capabilities of PPG-based heart rate estimation approaches First, we introduce a novel large-scale dataset (called PPG-DaLiA), including a wide range of activities performed under close to real-life conditions Second, we extend a state-of-the-art algorithm, significantly improving its performance on several datasets Third, we introduce deep learning to this domain, and investigate various convolutional neural network architectures Our end-to-end learning approach takes the time-frequency spectra of synchronised PPG- and accelerometer-signals as input, and provides the estimated heart rate as output Finally, we compare the novel deep learning approach to classical methods, performing evaluation on four public datasets We show that on large datasets the deep learning model significantly outperforms other methods: The mean absolute error could be reduced by 31 % on the new dataset PPG-DaLiA, and by 21 % on the dataset WESAD

176 citations

Journal ArticleDOI
TL;DR: Enable technologies and systems suitable for monitoring the populations at risk and those in quarantine, both for evaluating the health status of caregivers and management personnel, and for facilitating triage processes for admission to hospitals are reviewed.
Abstract: Coronavirus disease 2019 (COVID-19) has emerged as a pandemic with serious clinical manifestations including death. A pandemic at the large-scale like COVID-19 places extraordinary demands on the world's health systems, dramatically devastates vulnerable populations, and critically threatens the global communities in an unprecedented way. While tremendous efforts at the frontline are placed on detecting the virus, providing treatments and developing vaccines, it is also critically important to examine the technologies and systems for tackling disease emergence, arresting its spread and especially the strategy for diseases prevention. The objective of this article is to review enabling technologies and systems with various application scenarios for handling the COVID-19 crisis. The article will focus specifically on 1) wearable devices suitable for monitoring the populations at risk and those in quarantine, both for evaluating the health status of caregivers and management personnel, and for facilitating triage processes for admission to hospitals; 2) unobtrusive sensing systems for detecting the disease and for monitoring patients with relatively mild symptoms whose clinical situation could suddenly worsen in improvised hospitals; and 3) telehealth technologies for the remote monitoring and diagnosis of COVID-19 and related diseases. Finally, further challenges and opportunities for future directions of development are highlighted.

165 citations