scispace - formally typeset
Search or ask a question
Author

Dylan Bourgeois

Other affiliations: Stanford University
Bio: Dylan Bourgeois is an academic researcher from École Polytechnique Fédérale de Lausanne. The author has contributed to research in topics: Set (psychology) & Selection bias. The author has an hindex of 4, co-authored 10 publications receiving 327 citations. Previous affiliations of Dylan Bourgeois include Stanford University.

Papers
More filters
Posted Content
TL;DR: GnExplainer is proposed, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task.
Abstract: Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs.GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models, and explaining predictions made by GNNs remains unsolved. Here we propose GNNExplainer, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNExplainer identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction. Further, GNNExplainer can generate consistent and concise explanations for an entire class of instances. We formulate GNNExplainer as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms baselines by 17.1% on average. GNNExplainer provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.

391 citations

Proceedings Article
01 Dec 2019
TL;DR: GNNExplainer as mentioned in this paper identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction, and generates consistent and concise explanations for an entire class of instances.
Abstract: Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GnnExplainer, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GnnExplainer identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction. Further, GnnExplainer can generate consistent and concise explanations for an entire class of instances. We formulate GnnExplainer as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GnnExplainer provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.

239 citations

Posted Content
TL;DR: GnExplainer is proposed, a general model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task (node and graph classification, link prediction).
Abstract: Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by using neural networks to pass messages through edges in the graph. However, incorporating both graph structure and feature information leads to complex non-linear models and explaining predictions made by GNNs remains to be a challenging task. Here we propose GnnExplainer, a general model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task (node and graph classification, link prediction). In order to explain a given node's predicted label, GnnExplainer provides a local interpretation by highlighting relevant features as well as an important subgraph structure by identifying the edges that are most relevant to the prediction. Additionally, the model provides single-instance explanations when given a single prediction as well as multi-instance explanations that aim to explain predictions for an entire class of instances/nodes. We formalize GnnExplainer as an optimization task that maximizes the mutual information between the prediction of the full model and the prediction of simplified explainer model. We experiment on synthetic as well as real-world data. On synthetic data we demonstrate that our approach is able to highlight relevant topological structures from noisy graphs. We also demonstrate GnnExplainer to provide a better understanding of pre-trained models on real-world tasks. GnnExplainer provides a variety of benefits, from the identification of semantically relevant structures to explain predictions to providing guidance when debugging faulty graph neural network models.

85 citations

Proceedings ArticleDOI
23 Apr 2018
TL;DR: In this paper, the authors introduce a methodology to capture the latent structure of media's decision process on a large scale, and evaluate their approach on a set of events collected from the GDELT database.
Abstract: News entities must select and filter the coverage they broadcast through their respective channels since the set of world events is too large to be treated exhaustively. The subjective nature of this filtering induces biases due to, among other things, resource constraints, editorial guidelines, ideological affinities, or even the fragmented nature of the information at a journalist's disposal. The magnitude and direction of these biases are, however, widely unknown. The absence of ground truth, the sheer size of the event space, or the lack of an exhaustive set of absolute features to measure make it difficult to observe the bias directly, to characterize the leaning's nature and to factor it out to ensure a neutral coverage of the news. In this work, we introduce a methodology to capture the latent structure of media's decision process on a large scale. Our contribution is multi-fold. First, we show media coverage to be predictable using personalization techniques, and evaluate our approach on a large set of events collected from the GDELT database. We then show that a personalized and parametrized approach not only exhibits higher accuracy in coverage prediction, but also provides an interpretable representation of the selection bias. Last, we propose a method able to select a set of sources by leveraging the latent representation. These selected sources provide a more diverse and egalitarian coverage, all while retaining the most actively covered events.

11 citations

Proceedings ArticleDOI
TL;DR: This work introduces a methodology to capture the latent structure of media's decision process on a large scale, shows media coverage to be predictable using personalization techniques, and proposes a method to select a set of sources by leveraging the latent representation.
Abstract: News entities must select and filter the coverage they broadcast through their respective channels since the set of world events is too large to be treated exhaustively. The subjective nature of this filtering induces biases due to, among other things, resource constraints, editorial guidelines, ideological affinities, or even the fragmented nature of the information at a journalist's disposal. The magnitude and direction of these biases are, however, widely unknown. The absence of ground truth, the sheer size of the event space, or the lack of an exhaustive set of absolute features to measure make it difficult to observe the bias directly, to characterize the leaning's nature and to factor it out to ensure a neutral coverage of the news. In this work, we introduce a methodology to capture the latent structure of media's decision process on a large scale. Our contribution is multi-fold. First, we show media coverage to be predictable using personalization techniques, and evaluate our approach on a large set of events collected from the GDELT database. We then show that a personalized and parametrized approach not only exhibits higher accuracy in coverage prediction, but also provides an interpretable representation of the selection bias. Last, we propose a method able to select a set of sources by leveraging the latent representation. These selected sources provide a more diverse and egalitarian coverage, all while retaining the most actively covered events.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing as discussed by the authors. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs.
Abstract: Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.

686 citations

Posted Content
TL;DR: This survey comprehensively review the different types of deep learning methods on graphs by dividing the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks,graph autoencoders, graph reinforcement learning, and graph adversarial methods.
Abstract: Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.

470 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a timely overview of explainable AI, with a focus on 'post-hoc' explanations, explain its theoretical foundations, and put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations.
Abstract: With the broader and highly successful usage of machine learning in industry and the sciences, there has been a growing demand for Explainable AI. Interpretability and explanation methods for gaining a better understanding about the problem solving abilities and strategies of nonlinear Machine Learning, in particular, deep neural networks, are therefore receiving increased attention. In this work we aim to (1) provide a timely overview of this active emerging field, with a focus on 'post-hoc' explanations, and explain its theoretical foundations, (2) put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations, (3) outline best practice aspects i.e. how to best include interpretation methods into the standard usage of machine learning and (4) demonstrate successful usage of explainable AI in a representative selection of application scenarios. Finally, we discuss challenges and possible future directions of this exciting foundational field of machine learning.

385 citations

Journal ArticleDOI
04 Mar 2021
TL;DR: In this paper, the authors provide a timely overview of post hoc explanations and explain its theoretical foundations, and put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations, and demonstrate successful usage of XAI in a representative selection of application scenarios.
Abstract: With the broader and highly successful usage of machine learning (ML) in industry and the sciences, there has been a growing demand for explainable artificial intelligence (XAI). Interpretability and explanation methods for gaining a better understanding of the problem-solving abilities and strategies of nonlinear ML, in particular, deep neural networks, are, therefore, receiving increased attention. In this work, we aim to: 1) provide a timely overview of this active emerging field, with a focus on “ post hoc ” explanations, and explain its theoretical foundations; 2) put interpretability algorithms to a test both from a theory and comparative evaluation perspective using extensive simulations; 3) outline best practice aspects, i.e., how to best include interpretation methods into the standard usage of ML; and 4) demonstrate successful usage of XAI in a representative selection of application scenarios. Finally, we discuss challenges and possible future directions of this exciting foundational field of ML.

321 citations

Journal ArticleDOI
TL;DR: A review of the most prominent algorithmic concepts of explainable artificial intelligence, and forecasts future opportunities, potential applications as well as several remaining challenges is provided in this article. But, the review is limited to the use of deep learning for drug discovery.
Abstract: Deep learning bears promise for drug discovery, including advanced image analysis, prediction of molecular structure and function, and automated generation of innovative chemical entities with bespoke properties. Despite the growing number of successful prospective applications, the underlying mathematical models often remain elusive to interpretation by the human mind. There is a demand for ‘explainable’ deep learning methods to address the need for a new narrative of the machine language of the molecular sciences. This Review summarizes the most prominent algorithmic concepts of explainable artificial intelligence, and forecasts future opportunities, potential applications as well as several remaining challenges. We also hope it encourages additional efforts towards the development and acceptance of explainable artificial intelligence techniques. Drug discovery has recently profited greatly from the use of deep learning models. However, these models can be notoriously hard to interpret. In this Review, Jimenez-Luna and colleagues summarize recent approaches to use explainable artificial intelligence techniques in drug discovery.

270 citations