Author
Dylan DeSantis
Bio: Dylan DeSantis is an academic researcher from Ohio State University. The author has contributed to research in topics: Perovskite (structure) & Gamma spectroscopy. The author has an hindex of 2, co-authored 3 publications receiving 338 citations.
Papers
More filters
TL;DR: A dopant compensation in alloyed OIHP single crystals is reported to overcome limitations of device noise and charge collection, enabling γ-ray spectrum collection at room temperature.
Abstract: Organic–inorganic halide perovskites (OIHPs) bring an unprecedented opportunity for radiation detection with their defect-tolerance nature, large mobility–lifetime product, and simple crystal growth from solution. Here we report a dopant compensation in alloyed OIHP single crystals to overcome limitations of device noise and charge collection, enabling γ-ray spectrum collection at room temperature. CH3NH3PbBr3 and CH3NH3PbCl3 are found to be p-type and n-type doped, respectively, whereas dopant-compensated CH3NH3PbBr2.94Cl0.06 alloy has over tenfold improved bulk resistivity of 3.6 × 109 Ω cm. Alloying also increases the hole mobility to 560 cm2 V−1 s−1, yielding a high mobility–lifetime product of 1.8 × 10−2 cm2 V−1. The use of a guard ring electrode in the detector reduces the crystal surface leakage current and device dark current. A distinguishable 137Cs energy spectrum with comparable or better resolution than standard scintillator detectors is collected under a small electric field of 1.8 V mm−1 at room temperature. Hybrid organic–inorganic perovskite single crystals with optimized combination of Cl and Br ions are used to fabricate γ-ray detectors operating at room temperature and competing with the performance of sodium iodide scintillators.
426 citations
11 Mar 2017-Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment
TL;DR: In this article, the authors demonstrate a possible use of perovskite-based devices for detection of charged particles and investigate the mechanism of fundamental charge transport inside perovsite crystals, which can be applied in basic scientific research, health physics, and environmental analysis.
Abstract: Methylammonium lead tribromide (MAPbBr3) perovskite crystals have attracted significant attention due to their attractive performance in various optoelectronic applications such as solar cells, light-emitting devices, photodetectors, and recently in X-ray detectors. In this study, we demonstrate a possible use of perovskite-based devices for detection of charged particles (which can be applied in basic scientific research, health physics, and environmental analysis) and investigate the mechanism of fundamental charge transport inside perovskite crystals. It was found that inexpensive MAPbBr3 single crystals could be used for measuring the energy spectrum of charged particles through direct collection of the produced charge. After fitting the plot of the centroid peak position versus voltage with the Hecht equation for single-polarity charge transport, the obtained hole mobility-lifetime product was in the range of (0.4–1.6)×10−3 cm2/V.
62 citations
01 Jan 2017
TL;DR: In this paper, the authors present a general introduction to Gamma Spectroscopy and Gamma Spectral Spectrograms (GSS) and discuss its application in nuclear physics and gamma spectroscopy.
Abstract: .............................................................................................................................. ii Acknowledgments.............................................................................................................. iii Vita ..................................................................................................................................... iv List of Tables ..................................................................................................................... ix List of Figures ..................................................................................................................... x Chapter 1 – General Introduction ....................................................................................... 1 1.1 Thesis Introduction .................................................................................................... 1 1.2 Thesis Overview ........................................................................................................ 2 1.3 Literature Review ...................................................................................................... 4 Chapter 2 – Nuclear Physics & Gamma Spectroscopy ....................................................... 5 2.1 Nuclear Decay ........................................................................................................... 5 Cs γ Decay ............................................................................................................... 7 2.2 Photon Interactions with Matter ................................................................................ 9 Photoelectric Effect ..................................................................................................... 9 Compton Scattering ................................................................................................... 10
1 citations
Cited by
More filters
National University of Singapore1, China University of Geosciences (Beijing)2, Fuzhou University3, Hong Kong Polytechnic University4, King Abdullah University of Science and Technology5, Nanjing Tech University6, Shenzhen University7, Johns Hopkins University8, University of New South Wales9, University of Verona10, Nanjing University of Posts and Telecommunications11, Northwestern Polytechnical University12
TL;DR: All-inorganic perovskite nanocrystals containing caesium and lead provide low-cost, flexible and solution-processable scintillators that are highly sensitive to X-ray irradiation and emit radioluminescence that is colour-tunable across the visible spectrum.
Abstract: The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1–3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination. All-inorganic perovskite nanocrystals containing caesium and lead provide low-cost, flexible and solution-processable scintillators that are highly sensitive to X-ray irradiation and emit radioluminescence that is colour-tunable across the visible spectrum.
1,064 citations
TL;DR: The promising features and challenges of halide perovskites as promising radiation detectors are shown and it is suggested that they may compete with the conventional counterparts.
Abstract: Halide lead perovskites have attracted increasing attention in recent years for ionizing radiation detection due to their strong stopping power, defect-tolerance, large mobility-lifetime (μτ) product, tunable bandgap and simple single crystal growth from low-cost solution processes. In this review, we start with the requirement of material properties for high performance ionizing radiation detection based on direct detection mechanisms for applications in X-ray imaging and γ-ray energy spectroscopy. By comparing the performances of halide perovskites radiation detectors with current state-of-the-art ionizing radiation detectors, we show the promising features and challenges of halide perovskites as promising radiation detectors.
484 citations
TL;DR: This comprehensive review explores how the unique chemistry of halide perovskites can be exploited to tailor film growth processes and highlights the connections between processing methods and the resulting film characteristics.
Abstract: Halide perovskites are an intriguing class of materials that have recently attracted considerable attention for use as the active layer in thin film optoelectronic devices, including thin-film transistors, light-emitting devices, and solar cells. The “soft” nature of these materials, as characterized by their low formation energy and Young’s modulus, and high thermal expansion coefficients, not only enables thin films to be fabricated via low-temperature deposition methods but also presents rich opportunities for manipulating film formation. This comprehensive review explores how the unique chemistry of these materials can be exploited to tailor film growth processes and highlights the connections between processing methods and the resulting film characteristics. The discussion focuses principally on methylammonium lead iodide (CH3NH3PbI3 or MAPbI3), which serves as a useful and well-studied model system for examining the unique attributes of halide perovskites, but various other important members of this...
404 citations
TL;DR: In this paper, 1,3,7-trimethylxanthine, a commodity chemical with two conjugated carboxyl groups better known by its common name caffeine, improves the performance and thermal stability of perovskite solar cells.
Abstract: Summary To increase the commercial prospects of metal halide perovskite solar cells, there is a need for simple, cost-effective, and generalized approaches that mitigate their intrinsic thermal instability. Here we show that 1,3,7-trimethylxanthine, a commodity chemical with two conjugated carboxyl groups better known by its common name caffeine, improves the performance and thermal stability of perovskite solar cells based on both MAPbI3 and CsFAMAPbI3 active layers. The strong interaction between caffeine and Pb2+ ions serves as a “molecular lock” that increases the activation energy during film crystallization, delivering a perovskite film with preferred orientation, improved electronic properties, reduced ion migration, and greatly enhanced thermal stability. Planar n-i-p solar cells based on caffeine-incorporated pure MAPbI3 perovskites, which are notoriously unstable, exhibit a champion-stabilized efficiency of 19.8% and retain over 85% of their efficiency under continuous annealing at 85°C in nitrogen.
389 citations
TL;DR: A room-temperature triple-ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide, DDAB, and octanoic acid toward "ideal" perovskite QDs results in the highly efficient QD-based LEDs (QLEDs).
Abstract: Developing low-cost and high-quality quantum dots (QDs) or nanocrystals (NCs) and their corresponding efficient light-emitting diodes (LEDs) is crucial for the next-generation ultra-high-definition flexible displays. Here, there is a report on a room-temperature triple-ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide (TOAB), didodecyldimethylammonium bromide (DDAB), and octanoic acid (OTAc) toward "ideal" perovskite QDs with a high photoluminescence quantum yield (PLQY) of >90%, unity radiative decay in its intrinsic channel, stable ink characteristics, and effective charge injection and transportation in QD films, resulting in the highly efficient QD-based LEDs (QLEDs). Furthermore, the QD films with less nonradiative recombination centers exhibit improved PL properties with a PLQY of 61% through dopant engineering in A-site. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on CsPbBr3 QDs with the peak external quantum efficiency (EQE) of 11.6%, and the corresponding peak internal quantum efficiency (IQE) and power efficiency are 52.2% and 44.65 lm W-1 , respectively, which are the most-efficient perovskite QLEDs with colloidal CsPbBr3 QDs as emitters up to now. These results demonstrate that the as-obtained QD inks have a wide range application in future high-definition QD displays and high-quality lightings.
388 citations