scispace - formally typeset
Search or ask a question
Author

E.A. Santana

Bio: E.A. Santana is an academic researcher. The author has contributed to research in topics: Motion estimation & Image segmentation. The author has an hindex of 1, co-authored 1 publications receiving 188 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A new Bayesian formulation forParametric image segmentation is presented, based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators for both this field and the model parameters by the minimization of a differentiable function.
Abstract: Parametric image segmentation consists of finding a label field that defines a partition of an image into a set of nonoverlapping regions and the parameters of the models that describe the variation of some property within each region. A new Bayesian formulation for the solution of this problem is presented, based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators for both this field and the model parameters by the minimization of a differentiable function. An efficient minimization algorithm and comparisons with existing methods on synthetic images are presented, as well as examples of realistic applications to the segmentation of Magnetic Resonance volumes and to motion segmentation.

190 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper provides a review of automated fabric defect detection methods developed in recent years and divides them into seven approaches (statistical, spectral, model-based, learning, structural, hybrid, and motif-based) and performs a comparative study across these methods.

436 citations

Journal ArticleDOI
TL;DR: A statistical model is presented that combines the registration of an atlas with the segmentation of magnetic resonance images, and an Expectation Maximization-based algorithm is used to find a solution within the model.

312 citations

Journal ArticleDOI
TL;DR: This model takes full advantage of exploiting the spatial and contextual information present in the hyperspectral image, and outperforms many state-of-the-art methods in terms of the overall accuracy, average accuracy, and kappa (k) statistic.
Abstract: This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we propose a supervised classification model which includes a spectral data fidelity term and a spatially adaptive Markov random field (MRF) prior in the hidden field. The data fidelity term adopted in this paper is learned from the sparse multinomial logistic regression (SMLR) classifier, while the spatially adaptive MRF prior is modeled by a spatially adaptive total variation (SpATV) regularization to enforce a spatially smooth classifier. To further improve the classification accuracy, the true labels of training samples are fixed as an additional constraint in the proposed model. Thus, our model takes full advantage of exploiting the spatial and contextual information present in the hyperspectral image. An efficient hyperspectral image classification algorithm, named SMLR-SpATV, is then developed to solve the final proposed model using the alternating direction method of multipliers. Experimental results on real hyperspectral data sets demonstrate that the proposed approach outperforms many state-of-the-art methods in terms of the overall accuracy, average accuracy, and kappa (k) statistic.

210 citations

Journal ArticleDOI
TL;DR: The proposed method mainly focuses on multitask joint sparse representation (MJSR) and a stepwise Markov random filed framework and retains necessary correlation in spectral field during classification, which significantly enhances the classification accuracy and robustness.
Abstract: Hyperspectral image (HSI) classification is a crucial issue in remote sensing. Accurate classification benefits a large number of applications such as land use analysis and marine resource utilization. But high data correlation brings difficulty to reliable classification, especially for HSI with abundant spectral information. Furthermore, the traditional methods often fail to well consider the spatial coherency of HSI that also limits the classification performance. To address these inherent obstacles, a novel spectral–spatial classification scheme is proposed in this paper. The proposed method mainly focuses on multitask joint sparse representation (MJSR) and a stepwise Markov random filed framework, which are claimed to be two main contributions in this procedure. First, the MJSR not only reduces the spectral redundancy, but also retains necessary correlation in spectral field during classification. Second, the stepwise optimization further explores the spatial correlation that significantly enhances the classification accuracy and robustness. As far as several universal quality evaluation indexes are concerned, the experimental results on Indian Pines and Pavia University demonstrate the superiority of our method compared with the state-of-the-art competitors.

188 citations

Journal ArticleDOI
TL;DR: This work presents a novel spatial mixture model within a fully Bayesian framework with the ability to perform fully adaptive spatial regularization using Markov random fields, and examines the behavior of this model when applied to artificial data with different spatial characteristics, and to functional magnetic resonance imaging SPMs.
Abstract: Mixture models are often used in the statistical segmentation of medical images. For example, they can be used for the segmentation of structural images into different matter types or of functional statistical parametric maps (SPMs) into activations and nonactivations. Nonspatial mixture models segment using models of just the histogram of intensity values. Spatial mixture models have also been developed which augment this histogram information with spatial regularization using Markov random fields. However, these techniques have control parameters, such as the strength of spatial regularization, which need to be tuned heuristically to particular datasets. We present a novel spatial mixture model within a fully Bayesian framework with the ability to perform fully adaptive spatial regularization using Markov random fields. This means that the amount of spatial regularization does not have to be tuned heuristically but is adaptively determined from the data. We examine the behavior of this model when applied to artificial data with different spatial characteristics, and to functional magnetic resonance imaging SPMs.

186 citations