scispace - formally typeset
Search or ask a question
Author

E. Amata

Bio: E. Amata is an academic researcher. The author has contributed to research in topics: Angular resolution & Ion. The author has an hindex of 1, co-authored 1 publications receiving 241 citations.

Papers
More filters
Book ChapterDOI
TL;DR: The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spec-trometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination as mentioned in this paper.
Abstract: The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spec-trometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion Composition and Distribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from -0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.

257 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Cluster Ion Spectrometry (CIS) experiment as discussed by the authors measured the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e.
Abstract: . On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5°) angular resolution, and a Hot Ion Analyser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6°) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities) were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions)

1,209 citations

Journal ArticleDOI
Craig J. Pollock1, T. E. Moore1, A. D. Jacques1, James L. Burch2, U. Gliese1, Yoshifumi Saito, T. Omoto, Levon A. Avanov1, Levon A. Avanov3, A. C. Barrie1, Victoria N. Coffey4, John C. Dorelli1, Daniel J. Gershman5, Daniel J. Gershman1, Daniel J. Gershman3, Barbara L. Giles1, T. Rosnack1, C. Salo1, Shoichiro Yokota, M. L. Adrian1, C. Aoustin, C. Auletti1, S. Aung1, V. Bigio1, N. Cao1, Michael O. Chandler4, Dennis J. Chornay1, Dennis J. Chornay3, K. Christian1, George Clark1, George Clark6, George Clark7, Glyn Collinson1, Glyn Collinson7, T. Corris1, A. De Los Santos2, R. Devlin1, T. Diaz2, T. Dickerson1, C. Dickson1, A. Diekmann4, F. Diggs1, C. Duncan1, A. Figueroa-Vinas1, C. Firman1, M. Freeman2, N. Galassi1, K. Garcia1, G. Goodhart2, D. Guererro2, J. Hageman1, Jennifer Hanley2, E. Hemminger1, Matthew Holland1, M. Hutchins2, T. James1, W. Jones1, S. Kreisler1, Joseph Kujawski8, Joseph Kujawski1, V. Lavu1, J. V. Lobell1, E. LeCompte, A. Lukemire, Elizabeth MacDonald1, Al. Mariano1, Toshifumi Mukai, K. Narayanan1, Q. Nguyan1, M. Onizuka1, William R. Paterson1, S. Persyn2, Benjamin M. Piepgrass2, F. Cheney1, A. C. Rager7, A. C. Rager1, T. Raghuram1, A. Ramil1, L. S. Reichenthal1, H. Rodriguez2, Jean-Noël Rouzaud, A. Rucker1, Marilia Samara1, Jean-André Sauvaud, D. Schuster1, M. Shappirio1, K. Shelton1, D. Sher1, David Smith1, Kerrington D. Smith2, S. E. Smith7, S. E. Smith1, D. Steinfeld1, R. Szymkiewicz1, K. Tanimoto, J. Taylor2, Compton J. Tucker1, K. Tull1, A. Uhl1, J. Vloet2, P. Walpole1, P. Walpole2, S. Weidner2, D. White2, G. E. Winkert1, P.-S. Yeh1, M. Zeuch1 
TL;DR: The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics as mentioned in this paper.
Abstract: The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eV/q to 30000 eV/q. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory’s Instrument Suite Central Instrument Data Processor. This paper describes the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.

1,038 citations

Journal ArticleDOI
Vassilis Angelopoulos1, P. Cruce1, Alexander Drozdov1, Eric Grimes1, N. Hatzigeorgiu2, D. A. King2, Davin Larson2, James W. Lewis2, J. M. McTiernan2, D. A. Roberts3, C. L. Russell1, Tomoaki Hori4, Yoshiya Kasahara5, Atsushi Kumamoto6, Ayako Matsuoka, Yukinaga Miyashita7, Yoshizumi Miyoshi4, I. Shinohara, Mariko Teramoto4, Jeremy Faden, Alexa Halford8, Matthew D. McCarthy9, Robyn Millan10, John Sample11, David M. Smith12, L. A. Woodger10, Arnaud Masson, A. A. Narock3, Kazushi Asamura, T. F. Chang4, C. Y. Chiang13, Yoichi Kazama14, Kunihiro Keika15, S. Matsuda4, Tomonori Segawa4, Kanako Seki15, Masafumi Shoji4, Sunny W. Y. Tam13, Norio Umemura4, B. J. Wang16, B. J. Wang14, Shiang-Yu Wang14, Robert J. Redmon17, Juan V. Rodriguez17, Juan V. Rodriguez18, Howard J. Singer17, Jon Vandegriff19, S. Abe20, Masahito Nose4, Masahito Nose21, Atsuki Shinbori4, Yoshimasa Tanaka22, S. UeNo21, L. Andersson23, P. Dunn2, Christopher M. Fowler23, Jasper Halekas24, Takuya Hara2, Yuki Harada21, Christina O. Lee2, Robert Lillis2, David L. Mitchell2, Matthew R. Argall25, Kenneth R. Bromund3, James L. Burch26, Ian J. Cohen19, Michael Galloy27, Barbara L. Giles3, Allison Jaynes24, O. Le Contel28, Mitsuo Oka2, T. D. Phan2, Brian Walsh29, Joseph Westlake19, Frederick Wilder23, Stuart D. Bale2, Roberto Livi2, Marc Pulupa2, Phyllis Whittlesey2, A. DeWolfe23, Bryan Harter23, E. Lucas23, U. Auster30, John W. Bonnell2, Christopher Cully31, Eric Donovan31, Robert E. Ergun23, Harald U. Frey2, Brian Jackel31, A. Keiling2, Haje Korth19, J. P. McFadden2, Yukitoshi Nishimura29, Ferdinand Plaschke32, P. Robert28, Drew Turner8, James M. Weygand1, Robert M. Candey3, R. C. Johnson3, T. Kovalick3, M. H. Liu3, R. E. McGuire3, Aaron Breneman33, Kris Kersten33, P. Schroeder2 
TL;DR: The SPEDAS development history, goals, and current implementation are reviewed, and its “modes of use” are explained with examples geared for users and its technical implementation and requirements with software developers in mind are outlined.
Abstract: With the advent of the Heliophysics/Geospace System Observatory (H/GSO), a complement of multi-spacecraft missions and ground-based observatories to study the space environment, data retrieval, analysis, and visualization of space physics data can be daunting. The Space Physics Environment Data Analysis System (SPEDAS), a grass-roots software development platform ( www.spedas.org ), is now officially supported by NASA Heliophysics as part of its data environment infrastructure. It serves more than a dozen space missions and ground observatories and can integrate the full complement of past and upcoming space physics missions with minimal resources, following clear, simple, and well-proven guidelines. Free, modular and configurable to the needs of individual missions, it works in both command-line (ideal for experienced users) and Graphical User Interface (GUI) mode (reducing the learning curve for first-time users). Both options have “crib-sheets,” user-command sequences in ASCII format that can facilitate record-and-repeat actions, especially for complex operations and plotting. Crib-sheets enhance scientific interactions, as users can move rapidly and accurately from exchanges of technical information on data processing to efficient discussions regarding data interpretation and science. SPEDAS can readily query and ingest all International Solar Terrestrial Physics (ISTP)-compatible products from the Space Physics Data Facility (SPDF), enabling access to a vast collection of historic and current mission data. The planned incorporation of Heliophysics Application Programmer’s Interface (HAPI) standards will facilitate data ingestion from distributed datasets that adhere to these standards. Although SPEDAS is currently Interactive Data Language (IDL)-based (and interfaces to Java-based tools such as Autoplot), efforts are under-way to expand it further to work with python (first as an interface tool and potentially even receiving an under-the-hood replacement). We review the SPEDAS development history, goals, and current implementation. We explain its “modes of use” with examples geared for users and outline its technical implementation and requirements with software developers in mind. We also describe SPEDAS personnel and software management, interfaces with other organizations, resources and support structure available to the community, and future development plans.

371 citations

Journal ArticleDOI
TL;DR: The Solar Wind Ion Analyzer (SWIA) as discussed by the authors was used on the MAVEN mission to measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock.
Abstract: The Solar Wind Ion Analyzer (SWIA) on the MAVEN mission will measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock. The solar wind flux provides one of the key energy inputs that can drive atmospheric escape from the Martian system, as well as in part controlling the structure of the magnetosphere through which non-thermal ion escape must take place. SWIA measurements contribute to the top level MAVEN goals of characterizing the upper atmosphere and the processes that operate there, and parameterizing the escape of atmospheric gases to extrapolate the total loss to space throughout Mars’ history. To accomplish these goals, SWIA utilizes a toroidal energy analyzer with electrostatic deflectors to provide a broad 360∘×90∘ field of view on a 3-axis spacecraft, with a mechanical attenuator to enable a very high dynamic range. SWIA provides high cadence measurements of ion velocity distributions with high energy resolution (14.5 %) and angular resolution (3.75∘×4.5∘ in the sunward direction, 22.5∘×22.5∘ elsewhere), and a broad energy range of 5 eV to 25 keV. Onboard computation of bulk moments and energy spectra enable measurements of the basic properties of the solar wind at 0.25 Hz.

338 citations

Journal ArticleDOI
TL;DR: The European Space Agency's Cluster program as discussed by the authors is designed to study the small-scale spatial and temporal characteristics of the magnetospheric and near-Earth solar wind plasma, which is composed of four identical spacecraft which will be able to make physical measurements in 3D. The relative distance between the four spacecraft will be varied between 200 and 18000 km during the course of the mission.
Abstract: The European Space Agency's Cluster programme is designed to study the small-scale spatial and temporal characteristics of the magnetospheric and near-Earth solar wind plasma. The programme is composed of four identical spacecraft which will be able to make physical measurements in three dimensions. The relative distance between the four spacecraft will be varied between 200 and 18000 km during the course of the mission. This paper provides a general overview of the scientific objectives, the configuration and the orbit of the four spacecraft and the relation of Cluster to other missions.

331 citations