scispace - formally typeset
Search or ask a question
Author

E. B. G. Jones

Bio: E. B. G. Jones is an academic researcher from Biotec. The author has contributed to research in topics: Pleosporales & Dothideomycetes. The author has an hindex of 19, co-authored 41 publications receiving 1164 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Specific attention is given to the adaptation of the Dothideomycetes to the marine milieu, new lineages of marine fungi and their host specificity.

200 citations

Journal ArticleDOI
TL;DR: This set of notes introduces Phaeoseptaceae as a new family, Pseudobyssosphaeria (Melanommataceae) as anew genus, 40 new species, 11 new host or country records, one reference specimen, one new combination and provide a description of the holotype of Uleodothis balansiana (Dothideaceae).
Abstract: This is the fourth in a series of Mycosphere notes wherein we provide notes on various fungal genera. In this set of notes, we introduce Phaeoseptaceae as a new family, Pseudobyssosphaeria (Melanommataceae) as a new genus, 40 new species, 11 new host or country records, one reference specimen, one new combination and provide a description of the holotype of Uleodothis balansiana (Dothideaceae). The new species are Acrospermum longisporium (Acrospermaceae), Ascitendus aquaticus (Annulatascaceae), Ascochyta clinopodiicola (Didymellaceae), Asterina magnoliae (Asterinaceae), Barbatosphaeria aquatica (Barbatosphaeriaceae), Camarosporidiella populina (Camarosporidiellaceae), Chaetosphaeria mangrovei (Chaetosphaeriaceae), Cytospora predappioensis, Cytospora prunicola (Cytosporaceae), Dendryphiella phitsanulokensis (Dictyosporiaceae), Diaporthe subcylindrospora, Diaporthe subellipicola (Diaporthaceae), Diplodia arengae (Botryosphaeriaceae), Discosia querci (Sporocadaceae), Dyfrolomyces sinensis (Pleurotremataceae), Gliocladiopsis aquaticus (Nectriaceae), Hysterographium didymosporum (Pleosporomycetidae genera, incertae sedis), Kirschsteiniothelia phoenicis (Kirschsteiniotheliaceae), Leptogium thailandicum (Collemataceae), Lophodermium thailandicum (Rhytismataceae), Medicopsis chiangmaiensis (Neohendersoniaceae), Neocamarosporium phragmitis (Neocamarosporiaceae), Neodidymelliopsis negundinis (Didymellaceae), Neomassarina pandanicola (Sporormiaceae), Neooccultibambusa pandanicola (Occultibambusaceae), Neophaeosphaeria phragmiticola (Neophaeosphaeriaceae), Neosetophoma guiyangensis (Phaeosphaeriaceae), Neosetophoma shoemakeri (Phaeosphaeriaceae), Neosetophoma xingrensis (Phaeosphaeriaceae), Ophiocordyceps cylindrospora (Ophiocordycipitaceae), Otidea pseudoformicarum (Otideaceae), Periconia elaeidis (Periconiaceae), Phaeoisaria guttulata, Pleurotheciella krabiensis, Pleurotheciella tropica (Pleurotheciaceae), Pteridiospora bambusae (Astrosphaeriellaceae), Phaeoseptum terricola (Phaeoseptaceae), Poaceascoma taiwanense (Lentitheciaceae), Pseudobyssosphaeria bambusae (Melanommataceae) and Roussoella mangrovei (Roussoellaceae). The new host records or new country records are provided for Alfaria terrestris (Stachybotryaceae), Arthrinium phragmites (Apiosporaceae), Bertiella ellipsoidea (Melanommataceae), Brevicollum hyalosporum (Neohendersoniaceae), Byssosphaeria siamensis (Melanommataceae), Cerothallia subluteoalba (Teloschistaceae), Cryptophiale hamulata (Chaetosphaeriaceae), Didymella aliena (Didymellaceae), Epicoccum nigrum (Didymellaceae), Periconia pseudobyssoides (Periconiaceae) and Truncatella angustata (Sporocadaceae).

90 citations


Cited by
More filters
Book ChapterDOI
TL;DR: Mangroves are woody plants that grow at the interface between land and sea in tropical and sub-tropical latitudes where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures and muddy, anaerobic soils, creating unique ecological environments that host rich assemblages of species.
Abstract: Mangroves are woody plants that grow at the interface between land and sea in tropical and sub-tropical latitudes where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures and muddy, anaerobic soils. There may be no other group of plants with such highly developed morphological and physiological adaptations to extreme conditions. Because of their environment, mangroves are necessarily tolerant of high salt levels and have mechanisms to take up water despite strong osmotic potentials. Some also take up salts, but excrete them through specialized glands in the leaves. Others transfer salts into senescent leaves or store them in the bark or the wood. Still others simply become increasingly conservative in their water use as water salinity increases Morphological specializations include profuse lateral roots that anchor the trees in the loose sediments, exposed aerial roots for gas exchange and viviparous waterdispersed propagules. Mangroves create unique ecological environments that host rich assemblages of species. The muddy or sandy sediments of the mangal are home to a variety of epibenthic, infaunal, and meiofaunal invertebrates Channels within the mangal support communities of phytoplankton, zooplankton and fish. The mangal may play a special role as nursery habitat for juveniles of fish whose adults occupy other habitats (e.g. coral reefs and seagrass beds). Because they are surrounded by loose sediments, the submerged mangroves' roots, trunks and branches are islands of habitat that may attract rich epifaunal communities including bacteria, fungi, macroalgae and invertebrates. The aerial roots, trunks, leaves and branches host other groups of organisms. A number of crab species live among the roots, on the trunks or even forage in the canopy. Insects, reptiles, amphibians, birds and mammals thrive in the habitat and contribute to its unique character. Living at the interface between land and sea, mangroves are well adapted to deal with natural stressors (e.g. temperature, salinity, anoxia, UV). However, because they live close to their tolerance limits, they may be particularly sensitive to disturbances like those created by human activities. Because of their proximity to population centers, mangals have historically been favored sites for sewage disposal. Industrial effluents have contributed to heavy metal contamination in the sediments. Oil from spills and from petroleum production has flowed into many mangals. These insults have had significant negative effects on the mangroves. Habitat destruction through human encroachment has been the primary cause of mangrove loss. Diversion of freshwater for irrigation and land reclamation has destroyed extensive mangrove forests. In the past several decades, numerous tracts of mangrove have been converted for aquaculture, fundamentally altering the nature of the habitat. Measurements reveal alarming levels of mangrove destruction. Some estimates put global loss rates at one million ha y−1, with mangroves in some regions in danger of complete collapse. Heavy historical exploitation of mangroves has left many remaining habitats severely damaged. These impacts are likely to continue, and worsen, as human populations expand further into the mangals. In regions where mangrove removal has produced significant environmental problems, efforts are underway to launch mangrove agroforestry and agriculture projects. Mangrove systems require intensive care to save threatened areas. So far, conservation and management efforts lag behind the destruction; there is still much to learn about proper management and sustainable harvesting of mangrove forests. Mangroves have enormous ecological value. They protect and stabilize coastlines, enrich coastal waters, yield commercial forest products and support coastal fisheries. Mangrove forests are among the world's most productive ecosystems, producing organic carbon well in excess of the ecosystem requirements and contributing significantly to the global carbon cycle. Extracts from mangroves and mangrove-dependent species have proven activity against human, animal and plant pathogens. Mangroves may be further developed as sources of high-value commercial products and fishery resources and as sites for a burgeoning ecotourism industry. Their unique features also make them ideal sites for experimental studies of biodiversity and ecosystem function. Where degraded areas are being revegetated, continued monitoring and thorough assessment must be done to help understand the recovery process. This knowledge will help develop strategies to promote better rehabilitation of degraded mangrove habitats the world over and ensure that these unique ecosystems survive and flourish.

1,568 citations

Journal ArticleDOI
TL;DR: Most diagnostic characters used in current classifications of Cordyceps were not supported as being phylogenetically informative; the characters that were most consistent with the phylogeny were texture, pigmentation and morphology of stromata.

828 citations

Journal ArticleDOI
TL;DR: This review will concentrate on examples of work with entomopathogenic fungi, which illustrate the principles or strategies which can be used to reduce losses by insect pests.
Abstract: The Order Insecta contains nearly one million described species (May 2000) which comprise approximately 67% of the world’s described fauna and flora. Insects are central to the performance of many ecosystem processes. However, it is in their role as herbivores that conflicts arise with agricultural production due to direct consumption of cultivated crops and indirect damage by plant virus transmission or spoilage of potential yield. Natural enemies such as predators, parasitic wasps and flies, as well as pathogens have long been studied for exploitation in biological control and integrated pest management (IPM) strategies. For the purposes of this review, we will concentrate on examples of work with entomopathogenic fungi, which illustrate the principles or strategies which can be used to reduce losses by insect pests.

591 citations

Journal ArticleDOI

559 citations

Journal ArticleDOI
TL;DR: The Dothideomycetes are one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts as mentioned in this paper.
Abstract: The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.

514 citations