scispace - formally typeset
Search or ask a question
Author

E. Brown de Colstoun

Bio: E. Brown de Colstoun is an academic researcher from Raytheon. The author has contributed to research in topics: Canopy & Leaf area index. The author has an hindex of 1, co-authored 1 publications receiving 1557 citations.
Topics: Canopy, Leaf area index, Chlorophyll, Red edge

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a wide range of leaf chlorophyll levels were established in field-grown corn (Zea mays L.) with the application of 8 N levels: 0, 12.5%, 25, 50, 75, 100, 125, and 150% of the recommended rate.

1,861 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a method for minimizing the effect of leaf chlorophyll content on the prediction of green LAI was presented, and new algorithms that adequately predict the LAI of crop canopies.

1,915 citations

Journal ArticleDOI
TL;DR: In this paper, a combined modeling and indices-based approach is presented to predict the crop chlorophyll content from remote sensing data while minimizing LAI (vegetation parameter) influence and underlying soil background effects.

1,516 citations

Journal ArticleDOI
TL;DR: A variety of spectral indices now exist for various precision agriculture applications, rather than a focus on only normalised difference vegetation indices as discussed by the authors, and the spectral bandwidth has decreased dramatically with the advent of hyperspectral remote sensing, allowing improved analysis of specific compounds, molecular interactions, crop stress, and crop biophysical or biochemical characteristics.

1,296 citations

Journal ArticleDOI
TL;DR: The spectral characteristics of vegetation are introduced and the development of VIs are summarized, discussing their specific applicability and representativeness according to the vegetation of interest, environment, and implementation precision.
Abstract: Vegetation Indices (VIs) obtained from remote sensing based canopies are quite simple and effective algorithms for quantitative and qualitative evaluations of vegetation cover, vigor, and growth dynamics, among other applications These indices have been widely implemented within RS applications using different airborne and satellite platforms with recent advances using Unmanned Aerial Vehicles (UAV) Up to date, there is no unified mathematical expression that defines all VIs due to the complexity of different light spectra combinations, instrumentation, platforms, and resolutions used Therefore, customized algorithms have been developed and tested against a variety of applications according to specific mathematical expressions that combine visible light radiation, mainly green spectra region, from vegetation, and nonvisible spectra to obtain proxy quantifications of the vegetation surface In the real-world applications, optimization VIs are usually tailored to the specific application requirements coupled with appropriate validation tools and methodologies in the ground The present study introduces the spectral characteristics of vegetation and summarizes the development of VIs and the advantages and disadvantages from different indices developed This paper reviews more than 100 VIs, discussing their specific applicability and representativeness according to the vegetation of interest, environment, and implementation precision Predictably, research, and development of VIs, which are based on hyperspectral and UAV platforms, would have a wide applicability in different areas

1,190 citations

Journal ArticleDOI
TL;DR: The ability to generate quantitative remote sensing products by means of a helicopter-based UAV equipped with inexpensive thermal and narrowband multispectral imaging sensors is demonstrated, demonstrating comparable estimations, if not better, than those obtained by traditional manned airborne sensors.
Abstract: Two critical limitations for using current satellite sensors in real-time crop management are the lack of imagery with optimum spatial and spectral resolutions and an unfavorable revisit time for most crop stress-detection applications. Alternatives based on manned airborne platforms are lacking due to their high operational costs. A fundamental requirement for providing useful remote sensing products in agriculture is the capacity to combine high spatial resolution and quick turnaround times. Remote sensing sensors placed on unmanned aerial vehicles (UAVs) could fill this gap, providing low-cost approaches to meet the critical requirements of spatial, spectral, and temporal resolutions. This paper demonstrates the ability to generate quantitative remote sensing products by means of a helicopter-based UAV equipped with inexpensive thermal and narrowband multispectral imaging sensors. During summer of 2007, the platform was flown over agricultural fields, obtaining thermal imagery in the 7.5-13-mum region (40-cm resolution) and narrowband multispectral imagery in the 400-800-nm spectral region (20-cm resolution). Surface reflectance and temperature imagery were obtained, after atmospheric corrections with MODTRAN. Biophysical parameters were estimated using vegetation indices, namely, normalized difference vegetation index, transformed chlorophyll absorption in reflectance index/optimized soil-adjusted vegetation index, and photochemical reflectance index (PRI), coupled with SAILH and FLIGHT models. As a result, the image products of leaf area index, chlorophyll content (C ab), and water stress detection from PRI index and canopy temperature were produced and successfully validated. This paper demonstrates that results obtained with a low-cost UAV system for agricultural applications yielded comparable estimations, if not better, than those obtained by traditional manned airborne sensors.

1,106 citations