scispace - formally typeset
Search or ask a question
Author

E.C.M. Mariman

Bio: E.C.M. Mariman is an academic researcher from Radboud University Nijmegen. The author has contributed to research in topics: Regulation of gene expression & Gene mutation. The author has an hindex of 17, co-authored 23 publications receiving 3045 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Cowden disease (CD) (MIM 158350), or multiple hamartoma syndrome, is a rare autosomal dominant familial cancer syndrome with a high risk of breast cancer and central nervous system manifestations of CD were emphasized only recently.
Abstract: Cowden disease (CD) (MIM 158350), or multiple hamartoma syndrome, is a rare autosomal dominant familial cancer syndrome with a high risk of breast cancer. Its clinical features include a wide array of abnormalities but the main characteristics are hamartomas of the skin, breast, thyroid, oral mucosa and intestinal epithelium. The pathognomonic hamartomatous features of CD include multiple smooth facial papules, acral keratosis and multiple oral papillomas. The pathological hallmark of the facial papules are multiple trichilemmomas. Expression of the disease is variable and penetrance of the dermatological lesions is assumed to be virtually complete by the age of twenty. Central nervous system manifestations of CD were emphasized only recently and include megalencephaly, epilepsy and dysplastic gangliocytomas of the cerebellum (Lhermitte-Duclos disease, LDD). Early diagnosis is important since female patients with CD are at risk of developing breast cancer. Other lesions include benign and malignant disease of the thyroid, intestinal polyps and genitourinary abnormalities. To localize the gene for CD, an autosomal genome scan was performed. A total of 12 families were examined, resulting in a maximum lod score of 8.92 at theta = 0.02 with the marker D10S573 located on chromosome 10q22-23.

622 citations

Journal ArticleDOI
TL;DR: The PTEN/MMAC1 gene, encoding a putative protein tyrosine or dual-specificity phosphatase, is confirmed as the gene for Cowden disease by a refined localization of the gene to the interval between D 10S1761 and D10S541, which contains the PTEN-MMAC 1 gene and by mutation analysis in eight unrelated familial and 11 sporadic patients with Cowden Disease.
Abstract: Cowden disease, also known as multiple hamartoma syndrome, is an autosomal dominant cancer syndrome with a high risk of breast and thyroid cancer. The gene involved has been localized to chromosome 10q22-23. Recently, the tumour suppressor gene PTEN/MMAC1, encoding a putative protein tyrosine or dual-specificity phosphatase, was cloned from that region and three mutations were detected in patients with Cowden disease. We confirmed that the PTEN/MMAC1 gene is indeed the gene for Cowden disease by a refined localization of the gene to the interval between D10S1761 and D10S541, which contains the PTEN/MMAC1 gene and, by mutation analysis in eight unrelated familial and 11 sporadic patients with Cowden disease. Eight different mutations were detected in various regions of the PTEN/MMAC1 gene. One mutation was detected twice. All detected changes in the gene can be predicted to have a very deleterious effect on the putative protein. Five of the nine patients have a mutation in exon 5 coding for the putative active site and flanking amino acids. Evaluation of the clinical data of the patients in which a mutation could be detected gives no clear indications for a correlation between the genotype and phenotype. In 10 patients no mutation could be detected so far. In support of the linkage data, no evidence has emerged from the phenotype of these patients suggestive for genetic heterogeneity.

448 citations

Journal ArticleDOI
TL;DR: It is concluded that a homozygous LH receptor gene mutation underlies the syndrome of autosomal recessive congenital Leydig cell hypoplasia in this family, and results have implications for the understanding of the development of the male genitalia.
Abstract: Leydig cell hypoplasia is a rare autosomal recessive condition that interferes with normal development of male external genitalia in 46,XY individuals. We have studied two Leydig cell hypoplasia patients (siblings born to consanguineous parents), and found them to be homozygous for a missense mutation (Ala593Pro) in the sixth transmembrane domain of the luteinizing hormone (LH) receptor gene. In vitro expression studies showed that this mutated receptor binds human choriogonadotropin with a normal KD, but the ligand binding does not result in increased production of cAMP. We conclude that a homozygous LH receptor gene mutation underlies the syndrome of autosomal recessive congenital Leydig cell hypoplasia in this family. These results have implications for the understanding of the development of the male genitalia.

320 citations

Journal ArticleDOI
TL;DR: A genome-wide linkage analysis in a large Dutch kindred with autosomal dominant Noonan syndrome is performed, and data imply that a gene for Noonan Syndrome is located on chromosome 12q, between D12S84 and D 12S366.
Abstract: Noonan syndrome is characterized by typical facies, short stature and congenital cardiac defects. Approximately half of all cases are sporadic, but autosomal dominant inheritance with variable expression is well established. We have performed a genome-wide linkage analysis in a large Dutch kindred with autosomal dominant Noonan syndrome, and localized the Noonan syndrome gene to chromosome 12 (Zmax=4.04 at θ=0.0). Linkage analysis using chromosome 12 markers in 20 smaller, two-generation families gave Zmax=2.89 at θ=0.07, but haplotype analysis showed non-linkage in one family. These data imply that a gene for Noonan syndrome is located on chromosome 12q, between D12S84 and D12S366.

261 citations

Journal ArticleDOI
TL;DR: The large size of this family enabled the possible involvement of candidate regions by multipoint linkage analysis to be tested and the region surrounding the NF1 locus on chromosome 17 and the proximal part of chromosome 22 could be excluded.
Abstract: We describe the largest Noonan syndrome (NS) family reported to date. The manifestations of the affected relatives are discussed. In the absence of a biochemical marker NS is still a clinical diagnosis. The diagnostic criteria that were used are presented compared with other published criteria for diagnosing NS. The large size of this family enabled us to test the possible involvement of candidate regions by multipoint linkage analysis. Both the region surrounding the NF1 locus on chromosome 17 and the proximal part of chromosome 22 could be excluded. Since NS may well be heterogeneous, the use of such a large family in linkage studies of NS should prove indispensable.

256 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI 3K/ c-AKT pathway promotes cell survival, and the current spectrum of c- akt targets and their roles in mediating c- Akt-dependent cell survival are reviewed.
Abstract: The programmed cell death that occurs as part of normal mammalian development was first observed nearly a century ago (Collin 1906). It has since been established that approximately half of all neurons in the neuroaxis and >99.9% of the total number of cells generated during the course of a human lifetime go on to die through a process of apoptosis (for review, see Datta and Greenberg 1998; Vaux and Korsmeyer 1999). The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. The purification in the 1950s of the nerve growth factor (NGF), which promotes the survival of sympathetic neurons, set the stage for the discovery that peptide trophic factors promote the survival of a wide variety of cell types in vitro and in vivo (Levi-Montalcini 1987). The profound biological consequences of growth factor (GF) suppression of apoptosis are exemplified by the critical role of target-derived neurotrophins in the survival of neurons and the maintenance of functional neuronal circuits. (Pettmann and Henderson 1998). Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 38-OH kinase (PI3K)/c-Akt kinase cascade. Several targets of the PI3K/c-Akt signaling pathway have been recently identified that may underlie the ability of this regulatory cascade to promote survival. These substrates include two components of the intrinsic cell death machinery, BAD and caspase 9, transcription factors of the forkhead family, and a kinase, IKK, that regulates the NF-kB transcription factor. This article reviews the mechanisms by which survival factors regulate the PI3K/c-Akt cascade, the evidence that activation of the PI3K/c-Akt pathway promotes cell survival, and the current spectrum of c-Akt targets and their roles in mediating c-Akt-dependent cell survival.

4,260 citations

Journal ArticleDOI
TL;DR: The results identify a strong candidate tumour suppressor gene at chromosome 10q23.3, whose loss of function appears to be associated with the oncogenesis of multiple human cancers.
Abstract: Deletions involving regions of chromosome 10 occur in the vast majority (> 90%) of human glioblastoma multiformes. A region at chromosome 10q23-24 was implicated to contain a tumour suppressor gene and the identification of homozygous deletions in four glioma cell lines further refined the location. We have identified a gene, designated MMAC1, that spans these deletions and encodes a widely expressed 5.5-kb mRNA. The predicted MMAC1 protein contains sequence motifs with significant homology to the catalytic domain of protein phosphatases and to the cytoskeletal proteins, tensin and auxilin. MMAC1 coding-region mutations were observed in a number of glioma, prostate, kidney and breast carcinoma cell lines or tumour specimens. Our results identify a strong candidate tumour suppressor gene at chromosome 10q23.3, whose loss of function appears to be associated with the oncogenesis of multiple human cancers.

2,777 citations

Journal ArticleDOI
TL;DR: In vivo generation of mouse models carrying clinically relevant mutations using C→T and A→G editors is demonstrated, making it feasible to model and potentially cure relevant genetic diseases.
Abstract: A recently developed adenine base editor (ABE) efficiently converts A to G and is potentially useful for clinical applications. However, its precision and efficiency in vivo remains to be addressed. Here we achieve A-to-G conversion in vivo at frequencies up to 100% by microinjection of ABE mRNA together with sgRNAs. We then generate mouse models harboring clinically relevant mutations at Ar and Hoxd13, which recapitulates respective clinical defects. Furthermore, we achieve both C-to-T and A-to-G base editing by using a combination of ABE and SaBE3, thus creating mouse model harboring multiple mutations. We also demonstrate the specificity of ABE by deep sequencing and whole-genome sequencing (WGS). Taken together, ABE is highly efficient and precise in vivo, making it feasible to model and potentially cure relevant genetic diseases. CRISPR-based base editors allow for single nucleotide genome editing in a range of organisms. Here the authors demonstrate the in vivo generation of mouse models carrying clinically relevant mutations using C→T and A→G editors.

2,114 citations

Journal ArticleDOI
TL;DR: Basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts are reviewed.
Abstract: Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-alpha signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR-beta signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial-mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts.

2,074 citations