scispace - formally typeset
Search or ask a question
Author

E.C. Raulfs

Bio: E.C. Raulfs is an academic researcher from College of William & Mary. The author has contributed to research in topics: Chemosynthesis & Gill. The author has an hindex of 2, co-authored 2 publications receiving 181 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the first submersible reconnaissance of the Blake Ridge Diapir provides the geological and ecological contexts for chemosynthetic communities established in close association with methane seeps.
Abstract: Observations from the first submersible reconnaissance of the Blake Ridge Diapir provide the geological and ecological contexts for chemosynthetic communities established in close association with methane seeps. The seeps mark the loci of focused venting of methane from the gas hydrate reservoir, and, in one location (Hole 996D of the Ocean Drilling Program), methane emitted at the seafloor was observed forming gas hydrate on the underside of a carbonate overhang. Megafaunal elements of a chemosynthetically based community mapped onto dive tracks provide a preliminary overview of faunal distributions and habitat heterogeneity. Dense mussel beds were prominent and covered 20 � 20 m areas. The nearly non-overlapping distributions of mussels and clams indicate that there may be local (meter-scale) variations in fluid flux and chemistry within the seep site. Preliminary evidence suggests that the mussels are host to two symbiont types (sulfide-oxidizing thiotrophs and methanotrophs), while the clams derive their nutrition only from thiotrophic bacteria. Invertebrate biomass is dominated by mussels (Bathymodiolus heckerae) that reach lengths of up to 364 mm and, to a lesser extent, by small (22 mm length) vesicomyid clams (Vesicomya cf. venusta). Taking into account biomass distributions among taxa, symbiont characteristics of the bivalves, and stable-isotope analyses, the relative importance of methanotrophic vs thiotrophic bacteria in the overall nutrition of the invertebrate

163 citations

Journal ArticleDOI
TL;DR: Light and transmission electron microscopy showed that gill symbionts were lost from gill bacteriocytes in transplant mussels and that mussels exposed to longer periods of sulphide deprivation suffered deterioration of gill structure and body condition, and there was no evidence of a shift toward reliance on photosynthetically derived organic material in mussels at the waning vent site.
Abstract: Bathymodiolus thermophilus is a mixotrophic mussel capable of deriving nourishment from sulphur-oxidizing, bacterial endosymbionts in its gills and from suspended particulates through mucociliary feeding. These mussels become nutritionally stressed when removed from sulphide-rich fluid, but the dynamics of the host/symbiont relationship during this process are still not fully understood. Bathymodiolus thermophilus mussels were collected from an active and a waning hydrothermal site on the southern East Pacific Rise (EPR) and were removed from active venting for 12 d at a site on the northern EPR. Light and transmission electron microscopy showed that gill symbionts were lost from gill bacteriocytes in transplant mussels and that mussels exposed to longer periods of sulphide deprivation suffered deterioration of gill structure and body condition. There was no evidence to support the hypothesis of a shift toward reliance on photosynthetically derived organic material in mussels at the waning vent site.

37 citations


Cited by
More filters
Book ChapterDOI
TL;DR: This review examines the structures of animal communities in seep sediments and how they are shaped by hydrologic, geochemical and microbial processes, focusing on the mid-size sediment-dwelling infauna (foraminiferans, metazoan meiofauna and macrofauna), which have received less attention than megafauna or microbes.
Abstract: Cold seeps occur in geologically active and passive continental margins, where pore waters enriched in methane are forced upward through the sediments by pressure gradients. The advective supply of methane leads to dense microbial communities with high metabolic rates. Anaerobic methane oxidation presumably coupled to sulphate reduction facilitates formation of carbonates and, in many places, generates extremely high concentrations of hydrogen sulphide in pore waters. Increased food supply, availability of hard substratum and high concentrations of methane and sulphide supplied to free-living and symbiotic bacteria provide the basis for the complex ecosystems found at these sites. This review examines the structures of animal communities in seep sediments and how they are shaped by hydrologic, geochemical and microbial processes. The full size range of biota is addressed but emphasis is on the mid-size sediment-dwelling infauna (foraminiferans, metazoan meiofauna and macrofauna), which have received less attention than megafauna or microbes. Megafaunal biomass at seeps, which far exceeds that of surrounding non-seep sediments, is dominated by bivalves (mytilids, vesicomyids, lucinids and thyasirids) and vestimentiferan tube worms, with pogonophorans, cladorhizid sponges, gastropods and shrimp sometimes abundant. In contrast, seep sediments at shelf and upper slope depths have infaunal densities that often differ very little from those in ambient sediments. At greater depths, seep infauna exhibit enhanced densities, modified composition and reduced diversity relative to background sediments. Dorvilleid, hesionid and ampharetid polychaetes, nematodes, and calcareous foraminiferans are dominant. There is extensive spatial heterogeneity of microbes and higher organisms at seeps. Specialized infaunal communities are associated with different seep habitats (microbial mats, clam beds, mussel beds and tube worms aggregations) and with different vertical zones in the sediment. Whereas fluid flow and associated porewater properties, in particular sulphide concentration, appear to regulate the distribution, physiological adaptations and sometimes behaviour of many seep biota, sometimes the reverse is true. Animal-microbe interactions at seeps are complex and involve symbioses, heterotrophic nutrition, geochemical feedbacks and habitat structure. Nutrition of seep fauna varies, with thiotrophic and methanotrophic symbiotic bacteria fueling most of the megafaunal forms but macrofauna and most meiofauna are mainly heterotrophic. Macrofaunal food sources are largely photosynthesis-based at shallower seeps but reflect carbon fixation by chemosynthesis and considerable incorporation of methane-derived C at deeper seeps. Export of seep carbon appears to be highly localized based on limited studies in the Gulf of Mexico. Seep ecosystems remain one of the ocean's true frontiers. Seep sediments represent some of the most extreme marine conditions and offer unbounded opportunities for discovery in the realms of animal-microbe-geochemical interactions, physiology, trophic ecology, biogeography, system-atics and evolution.

540 citations

Journal ArticleDOI
TL;DR: The origin of modern vent-seep biota has been attributed to either enhanced accumulation of Paleozoic and Mesozoic relics, or migration of various invertebrate groups into vent and seep environments during the Phanerozoic as discussed by the authors.

503 citations

Journal ArticleDOI
TL;DR: In this article, the authors synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems, and document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity.
Abstract: Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as regional oceanography and biodiversity. Many ecosystem services are associated with the interactions and transitions between chemosynthetic and background ecosystems, for example carbon cycling and sequestration, fisheries production, and a host of non-market and cultural services. The quantification of the sphere of influence of vents and seeps could be beneficial to better management of deep-sea environments in the face of growing industrialization.

269 citations

Journal ArticleDOI
TL;DR: In this paper, the authors assess the potential impact of massive sulfide mining on the benthic fauna, and propose mitigation strategies to minimize the impact of mining activities, focusing on facilitating recolonisation of areas impacted by mining, spatial management with open and closed areas and reducing the effects of sediment plumes from mining activity.

221 citations

Journal ArticleDOI
TL;DR: The 3 to 5mthick Doushantuo cap carbonate in south China overlies the glaciogenic Nantuo Formation (ca. 635 Ma) and consists of laterally persistent, thinly laminated and normally graded dolomite and limestone indicative of relatively deep-water deposition, most likely below storm wave base as discussed by the authors.
Abstract: The 3- to 5-m-thick Doushantuo cap carbonate in south China overlies the glaciogenic Nantuo Formation (ca. 635 Ma) and consists of laterally persistent, thinly laminated and normally graded dolomite and limestone indicative of relatively deep-water deposition, most likely below storm wave base. The basal portion of this carbonate contains a distinctive suite of closely associated tepee-like structures, stromatactis-like cavities, layer-parallel sheet cracks, and cemented breccias. The cores of tepees are composed of stacked cavities lined by cements and brecciated host dolomicrite. Onlap by laminated sediment indicates synsedimentary disruption of bedding that resulted in a positive seafloor expression. Cavities and sheet cracks contain internal sediments, and they are lined by originally aragonitic isopachous botryoidal cements with acicular radiating needles, now replaced by dolomite and silica. Pyrite and barite are common, and calcite is locally retained as a primary mineral. These features share morphological and petrographic attributes with modern and ancient methane seeps in which methane gas and fluids provide both a force for physical disruption from buoyancy and a source of alkalinity for significant cementation. The presence of δ13C values as low as −41‰ in well preserved limestone crusts and cements within and immediately above the tepee-like structures provides unequivocal evidence for methane influence, and the widespread distribution of identical sedimentary structures and paragenetic cement sequences across the entire basin at the same basal cap carbonate level is consistent with gas hydrate destabilization and the development of methane seeps as a result of postglacial warming of the ocean. Considering the broad distribution of similar features at the same stratigraphic level in other cap carbonates globally, we suggest that the late Neoproterozoic postglacial methane release may have influenced the oceanic oxygen level as well as contributed to postglacial warming via the greenhouse effects of methane.

199 citations