scispace - formally typeset
Search or ask a question
Author

E. Fretwurst

Bio: E. Fretwurst is an academic researcher from University of Hamburg. The author has contributed to research in topics: Silicon & Irradiation. The author has an hindex of 11, co-authored 15 publications receiving 725 citations.

Papers
More filters
Journal ArticleDOI
G. Lindström1, M. Ahmed2, Sebastiano Albergo, Phillip Allport3, D.F. Anderson4, Ladislav Andricek5, M. Angarano6, Vincenzo Augelli, N. Bacchetta, P. Bartalini6, Richard Bates7, U. Biggeri, G. M. Bilei6, Dario Bisello, D. Boemi, E. Borchi, T. Botila, T. J. Brodbeck8, Mara Bruzzi, T. Budzyński, P. Burger, Francesca Campabadal9, Gianluigi Casse3, E. Catacchini, A. Chilingarov8, Paolo Ciampolini6, Vladimir Cindro10, M. J. Costa9, Donato Creanza, Paul Clauws11, C. Da Via2, Gavin Davies12, W. De Boer13, Roberto Dell'Orso, M. De Palma, B. Dezillie14, V. K. Eremin, O. Evrard, Giorgio Fallica15, Georgios Fanourakis, H. Feick16, Ettore Focardi, Luis Fonseca9, E. Fretwurst1, J. Fuster9, K. Gabathuler, Maurice Glaser17, Piotr Grabiec, E. Grigoriev13, Geoffrey Hall18, M. Hanlon3, F. Hauler13, S. Heising13, A. Holmes-Siedle2, Roland Horisberger, G. Hughes8, Mika Huhtinen17, I. Ilyashenko, Andrew Ivanov, B.K. Jones8, L. Jungermann13, A. Kaminsky, Z. Kohout19, Gregor Kramberger10, M Kuhnke1, Simon Kwan4, F. Lemeilleur17, Claude Leroy20, M. Letheren17, Z. Li14, Teresa Ligonzo, Vladimír Linhart19, P.G. Litovchenko21, Demetrios Loukas, Manuel Lozano9, Z. Luczynski, Gerhard Lutz5, B. C. MacEvoy18, S. Manolopoulos7, A. Markou, C Martinez9, Alberto Messineo, M. Mikuž10, Michael Moll17, E. Nossarzewska, G. Ottaviani, Val O'Shea7, G. Parrini, Daniele Passeri6, D. Petre, A. Pickford7, Ioana Pintilie, Lucian Pintilie, Stanislav Pospisil19, Renato Potenza, C. Raine7, Joan Marc Rafi9, P. N. Ratoff8, Robert Richter5, Petra Riedler17, Shaun Roe17, P. Roy20, Arie Ruzin22, A.I. Ryazanov23, A. Santocchia18, Luigi Schiavulli, P. Sicho24, I. Siotis, T. J. Sloan8, W. Slysz, Kristine M. Smith7, M. Solanky2, B. Sopko19, K. Stolze, B. Sundby Avset25, B. G. Svensson26, C. Tivarus, Guido Tonelli, Alessia Tricomi, Spyros Tzamarias, Giusy Valvo15, A. Vasilescu, A. Vayaki, E. M. Verbitskaya, Piero Giorgio Verdini, Vaclav Vrba24, Stephen Watts2, Eicke R. Weber16, M. Wegrzecki, I. Węgrzecka, P. Weilhammer17, R. Wheadon, C.D. Wilburn27, I. Wilhelm28, R. Wunstorf29, J. Wüstenfeld29, J. Wyss, K. Zankel17, P. Zabierowski, D. Žontar10 
TL;DR: In this paper, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing.
Abstract: The RD48 (ROSE) collaboration has succeeded to develop radiation hard silicon detectors, capable to withstand the harsh hadron fluences in the tracking areas of LHC experiments. In order to reach this objective, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing. Systematic investigations have been carried out on various standard and oxygenated silicon diodes with neutron, proton and pion irradiation up to a fluence of 5×1014 cm−2 (1 MeV neutron equivalent). Major focus is on the changes of the effective doping concentration (depletion voltage). Other aspects (reverse current, charge collection) are covered too and the appreciable benefits obtained with DOFZ silicon in radiation tolerance for charged hadrons are outlined. The results are reliably described by the “Hamburg model”: its application to LHC experimental conditions is shown, demonstrating the superiority of the defect engineered silicon. Microscopic aspects of damage effects are also discussed, including differences due to charged and neutral hadron irradiation.

402 citations

Journal ArticleDOI
TL;DR: In this article, it was found that the annealing behavior of the electron traps attributed to the single and double charged divacancy is strongly related to the current related damage parameter α.
Abstract: Silicon detectors produced from materials with different resistivities and oxygen concentrations have been irradiated with energetic neutrons, protons and pions. Isothermal annealing studies have shown correlation between microscopic defect evolution and the macroscopic detector performance. It was found that the annealing behavior of the electron traps attributed to the single and double charged divacancy is strongly related to the current related damage parameter α. In both cases the isothermal evolution is independent of the oxygen and doping concentration in the material under investigation ( 2×10 14 O ] 18 cm −3 and 10 12 P ] 13 cm −3 ) and the absolute values do not depend on the particles used for the irradiation provided the fluence is properly normalized by the nonionizing energy loss (NIEL). In contrast to this result the introduction rates of the observed point defects VOi and CiCs were however found to depend on the particle type. Thus clear indication is given that the generation of point defects does not scale with NIEL. Compared to neutron irradiated samples the introduction rate after irradiation with charged hadrons was found to be higher by a factor around 2.

119 citations

Journal ArticleDOI
TL;DR: In this paper, a new method of measuring carrier trapping time by a simple analysis of the current pulse shape is proposed and demonstrated for irradiated silicon detectors, which is called Exponentiated Charge Crossing (ECC).
Abstract: A new method of measuring carrier trapping time by a simple analysis of the current pulse shape is proposed and demonstrated for irradiated silicon detectors. This method which we call Exponentiated Charge Crossing (ECC) requires no knowledge of either the electric field profile in the detector or of the relation between the carrier drift velocity and the electric field. It is general enough to be valid not only for solid-state particle detectors but also for other devices such as some gaseous and liquid detectors. The results obtained by the proposed method are consistent with those obtained by an earlier method.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the free charge carrier transport for electrons, respectively, holes separately was investigated using time-resolved current transients induced by nanosecond laser pulses and measurements were performed as a function of operating temperature (100 −300 K) and bias voltage.
Abstract: Neutron- and 60 Co gamma-irradiated silicon detectors have been investigated using time-resolved current transients (TCT) induced by nanosecond laser pulses. Measurements were performed as a function of operating temperature (100–300 K) and bias voltage. Illumination was done on both the junction and ohmic side, allowing the investigation of the free charge carrier transport for electrons, respectively, holes separately. In this way, temperature-dependent trapping and detrapping effects as well as related electric field transformations have been studied and enable us to extract relevant defect parameters. Results achieved for the damaged detectors are presented and discussed in comparison with DLTS data.

38 citations

Journal ArticleDOI
TL;DR: The Adaptive Gain Integrating Pixel Detector (AGIPD) as mentioned in this paper is a pixel array with readout ASICs bump-bonded to a silicon sensor with pixels of 200 × 200 μm2.
Abstract: The European X-ray Free Electron Laser (XFEL) will deliver 27000 fully coherent, high brilliance X-ray pulses per second each with a duration below 100 fs. This will allow the recording of diffraction patterns of single molecules and the study of ultra-fast processes. One of the detector systems under development for the XFEL is the Adaptive Gain Integrating Pixel Detector (AGIPD), which consists of a pixel array with readout ASICs bump-bonded to a silicon sensor with pixels of 200 × 200 μm2. The particular requirements for the detector are a high dynamic range (0, 1 up to 105 12 keV photons/XFEL-pulse), a fast read-out and radiation tolerance up to doses of 1 GGy of 12 keV X-rays for 3 years of operation. At this X-ray energy no bulk damage in silicon is expected. However fixed oxide charges in the SiO2 layer and interface traps at the Si-SiO2 interface will build up. As function of the 12 keV X-ray dose the microscopic defects in test structures and the macroscopic electrical properties of segmented sensors have been investigated. From the test structures the oxide charge density, the density of interface traps and their properties as function of dose have been determined. It is found that both saturate (and even decrease) for doses above a few MGy. For segmented sensors surface damage introduced by the X-rays increases the full depletion voltage, the surface leakage current and the inter-pixel capacitance. In addition an electron accumulation layer forms at the Si-SiO2 interface which increases with dose and decreases with applied voltage. Using TCAD simulations with the dose dependent damage parameters obtained from the test structures the results of the measurements can be reproduced. This allows the optimization of the sensor design for the XFEL requirements.

30 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

5,193 citations

Journal ArticleDOI
Georges Aad1, M. Ackers2, F. Alberti, M. Aleppo3  +264 moreInstitutions (18)
TL;DR: In this article, the silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized and detailed descriptions of the pixel detector electronics and the silicon sensors are given.
Abstract: The silicon pixel tracking system for the ATLAS experiment at the Large Hadron Collider is described and the performance requirements are summarized. Detailed descriptions of the pixel detector electronics and the silicon sensors are given. The design, fabrication, assembly and performance of the pixel detector modules are presented. Data obtained from test beams as well as studies using cosmic rays are also discussed.

709 citations

Journal ArticleDOI
TL;DR: A historical review of the literature on the effects of radiation-induced displacement damage in semiconductor materials and devices to provide a guide to displacement damage literature and to offer critical comments regarding that literature in an attempt to identify key findings.
Abstract: This paper provides a historical review of the literature on the effects of radiation-induced displacement damage in semiconductor materials and devices. Emphasis is placed on effects in technologically important bulk silicon and silicon devices. The primary goals are to provide a guide to displacement damage literature, to offer critical comments regarding that literature in an attempt to identify key findings, to describe how the understanding of displacement damage mechanisms and effects has evolved, and to note current trends. Selected tutorial elements are included as an aid to presenting the review information more clearly and to provide a frame of reference for the terminology used. The primary approach employed is to present information qualitatively while leaving quantitative details to the cited references. A bibliography of key displacement-damage information sources is also provided.

607 citations

Journal ArticleDOI
G. Lindström1, M. Ahmed2, Sebastiano Albergo, Phillip Allport3, D.F. Anderson4, Ladislav Andricek5, M. Angarano6, Vincenzo Augelli, N. Bacchetta, P. Bartalini6, Richard Bates7, U. Biggeri, G. M. Bilei6, Dario Bisello, D. Boemi, E. Borchi, T. Botila, T. J. Brodbeck8, Mara Bruzzi, T. Budzyński, P. Burger, Francesca Campabadal9, Gianluigi Casse3, E. Catacchini, A. Chilingarov8, Paolo Ciampolini6, Vladimir Cindro10, M. J. Costa9, Donato Creanza, Paul Clauws11, C. Da Via2, Gavin Davies12, W. De Boer13, Roberto Dell'Orso, M. De Palma, B. Dezillie14, V. K. Eremin, O. Evrard, Giorgio Fallica15, Georgios Fanourakis, H. Feick16, Ettore Focardi, Luis Fonseca9, E. Fretwurst1, J. Fuster9, K. Gabathuler, Maurice Glaser17, Piotr Grabiec, E. Grigoriev13, Geoffrey Hall18, M. Hanlon3, F. Hauler13, S. Heising13, A. Holmes-Siedle2, Roland Horisberger, G. Hughes8, Mika Huhtinen17, I. Ilyashenko, Andrew Ivanov, B.K. Jones8, L. Jungermann13, A. Kaminsky, Z. Kohout19, Gregor Kramberger10, M Kuhnke1, Simon Kwan4, F. Lemeilleur17, Claude Leroy20, M. Letheren17, Z. Li14, Teresa Ligonzo, Vladimír Linhart19, P.G. Litovchenko21, Demetrios Loukas, Manuel Lozano9, Z. Luczynski, Gerhard Lutz5, B. C. MacEvoy18, S. Manolopoulos7, A. Markou, C Martinez9, Alberto Messineo, M. Mikuž10, Michael Moll17, E. Nossarzewska, G. Ottaviani, Val O'Shea7, G. Parrini, Daniele Passeri6, D. Petre, A. Pickford7, Ioana Pintilie, Lucian Pintilie, Stanislav Pospisil19, Renato Potenza, C. Raine7, Joan Marc Rafi9, P. N. Ratoff8, Robert Richter5, Petra Riedler17, Shaun Roe17, P. Roy20, Arie Ruzin22, A.I. Ryazanov23, A. Santocchia18, Luigi Schiavulli, P. Sicho24, I. Siotis, T. J. Sloan8, W. Slysz, Kristine M. Smith7, M. Solanky2, B. Sopko19, K. Stolze, B. Sundby Avset25, B. G. Svensson26, C. Tivarus, Guido Tonelli, Alessia Tricomi, Spyros Tzamarias, Giusy Valvo15, A. Vasilescu, A. Vayaki, E. M. Verbitskaya, Piero Giorgio Verdini, Vaclav Vrba24, Stephen Watts2, Eicke R. Weber16, M. Wegrzecki, I. Węgrzecka, P. Weilhammer17, R. Wheadon, C.D. Wilburn27, I. Wilhelm28, R. Wunstorf29, J. Wüstenfeld29, J. Wyss, K. Zankel17, P. Zabierowski, D. Žontar10 
TL;DR: In this paper, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing.
Abstract: The RD48 (ROSE) collaboration has succeeded to develop radiation hard silicon detectors, capable to withstand the harsh hadron fluences in the tracking areas of LHC experiments. In order to reach this objective, a defect engineering technique was employed resulting in the development of Oxygen enriched FZ silicon (DOFZ), ensuring the necessary O-enrichment of about 2×1017 O/cm3 in the normal detector processing. Systematic investigations have been carried out on various standard and oxygenated silicon diodes with neutron, proton and pion irradiation up to a fluence of 5×1014 cm−2 (1 MeV neutron equivalent). Major focus is on the changes of the effective doping concentration (depletion voltage). Other aspects (reverse current, charge collection) are covered too and the appreciable benefits obtained with DOFZ silicon in radiation tolerance for charged hadrons are outlined. The results are reliably described by the “Hamburg model”: its application to LHC experimental conditions is shown, demonstrating the superiority of the defect engineered silicon. Microscopic aspects of damage effects are also discussed, including differences due to charged and neutral hadron irradiation.

402 citations

Journal ArticleDOI
TL;DR: An overview of the radiation-damage-induced problems connected with the application of silicon particle detectors in future high-energy physics experiments is given in this article, where possible ways are outlined for improving the radiation tolerance of silicon detectors either by operational conditions, process technology or defect engineering.
Abstract: An overview of the radiation-damage-induced problems connected with the application of silicon particle detectors in future high-energy physics experiments is given. Problems arising from the expected hadron fluences are summarized and the use of the nonionizing energy loss for normalization of bulk damage is explained. The present knowledge on the deterioration effects caused by irradiation is described leading to an appropriate modeling. Examples are given for a correlation between the change in the macroscopic performance parameters and effects to be seen on the microscopic level by defect analysis. Finally possible ways are out-lined for improving the radiation tolerance of silicon detectors either by operational conditions, process technology or defect engineering.

260 citations