scispace - formally typeset
Search or ask a question
Author

E. Georgescu

Bio: E. Georgescu is an academic researcher from Max Planck Society. The author has contributed to research in topics: Magnetopause & Magnetosphere. The author has an hindex of 31, co-authored 68 publications receiving 4919 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of the instrumentation used to measure the magnetic field on the four Cluster spacecraft and an overview the performance of the operational modes used in flight.
Abstract: . The accurate measurement of the magnetic field along the orbits of the four Cluster spacecraft is a primary objective of the mission. The magnetic field is a key constituent of the plasma in and around the magnetosphere, and it plays an active role in all physical processes that define the structure and dynamics of magnetospheric phenomena on all scales. With the four-point measurements on Cluster, it has become possible to study the three-dimensional aspects of space plasma phenomena on scales commeasurable with the size of the spacecraft constellation, and to distinguish temporal and spatial dependences of small-scale processes. We present an overview of the instrumentation used to measure the magnetic field on the four Cluster spacecraft and an overview the performance of the operational modes used in flight. We also report on the results of the preliminary in-orbit calibration of the magnetometers; these results show that all components of the magnetic field are measured with an accuracy approaching 0.1 nT. Further data analysis is expected to bring an even more accurate determination of the calibration parameters. Several examples of the capabilities of the investigation are presented from the commissioning phase of the mission, and from the different regions visited by the spacecraft to date: the tail current sheet, the dusk side magnetopause and magnetosheath, the bow shock and the cusp. We also describe the data processing flow and the implementation of data distribution to other Cluster investigations and to the scientific community in general. Key words. Interplanetary physics (instruments and techniques) – magnetospheric physics (magnetospheric configuration and dynamics) – space plasma physics (shock waves)

1,218 citations

Journal ArticleDOI
TL;DR: The THEMIS Fluxgate Magnetometer (FGM) as discussed by the authors was designed to study abrupt reconfigurations of the Earth's magnetosphere during the substorm onset phase and is capable of detecting variations of the magnetic field with amplitudes of 0.01 nT.
Abstract: The THEMIS Fluxgate Magnetometer (FGM) measures the background magnetic field and its low frequency fluctuations (up to 64 Hz) in the near-Earth space. The FGM is capable of detecting variations of the magnetic field with amplitudes of 0.01 nT, and it is particularly designed to study abrupt reconfigurations of the Earth’s magnetosphere during the substorm onset phase. The FGM uses an updated technology developed in Germany that digitizes the sensor signals directly and replaces the analog hardware by software. Use of the digital fluxgate technology results in lower mass of the instrument and improved robustness. The present paper gives a description of the FGM experimental design and the data products, the extended calibration tests made before spacecraft launch, and first results of its magnetic field measurements during the first half year in space. It is also shown that the FGM on board the five THEMIS spacecraft well meets and even exceeds the required conditions of the stability and the resolution for the magnetometer.

1,198 citations

Journal ArticleDOI
TL;DR: In this article, the first evidence of the link between energetic electrons and magnetic islands during reconnection in the Earth's magnetosphere was reported, which suggests that energetic electron fluxes peak at sites of compressed density within islands, which imposes a new constraint on theories of electron acceleration.
Abstract: Magnetic reconnection is the underlying process that releases impulsively an enormous amount of magnetic energy1 in solar flares 2,3, flares on strongly magnetized neutron stars4 and substorms in the Earth’s magnetosphere5. Studies of energy release during solar flares, in particular, indicate that up to 50% of the released energy is carried by accelerated 20–100 keV suprathermal electrons6,7,8. How so many electrons can gain so much energy during reconnection has been a long-standing question. A recent theoretical study suggests that volume-filling contracting magnetic islands formed during reconnection can produce a large number of energetic electrons9. Here we report the first evidence of the link between energetic electrons and magnetic islands during reconnection in the Earth’s magnetosphere. The results indicate that energetic electron fluxes peak at sites of compressed density within islands, which imposes a new constraint on theories of electron acceleration.

266 citations

Journal ArticleDOI
20 Apr 2000-Nature
TL;DR: In situ two-spacecraft observations of bi-directional jets at the magnetopause find evidence for a stable and extended reconnection line, and conclude that reconnection is determined by large-scale interactions between the solar wind and the magnetosphere, rather than by local conditions at the Magnetopause.
Abstract: Magnetic reconnection is a process that converts magnetic energy into bi-directional plasma jets; it is believed to be the dominant process by which solar-wind energy enters the Earth's magnetosphere1,2. This energy is subsequently dissipated by magnetic storms and aurorae3,4. Previous single-spacecraft observations5,6,7 revealed only single jets at the magnetopause—while the existence of a counter-streaming jet was implicitly assumed, no experimental confirmation was available. Here we report in situ two-spacecraft observations of bi-directional jets at the magnetopause, finding evidence for a stable and extended reconnection line; the latter implies substantial entry of the solar wind into the magnetosphere. We conclude that reconnection is determined by large-scale interactions between the solar wind and the magnetosphere, rather than by local conditions at the magnetopause.

239 citations

Journal ArticleDOI
TL;DR: In this article, the design of the magnetic field instrument onboard both of the Double Star spacecraft and an overview of the performance as measured first on-ground and then in-orbit.
Abstract: One of the primary objectives of the Double Star mission is the accurate measurement of the magnetic field vector along the orbits of the two spacecraft. The magnetic field is an essential parameter for the understanding of space plasma processes and is also required for the effective interpretation of data from the other instruments on the spacecraft. We present the design of the magnetic field instrument onboard both of the Double Star spacecraft and an overview of the performance as measured first on-ground and then in-orbit. We also report the results of in-flight calibration of the magnetometers, and the processing methods employed to produce the final data products which are provided to Double Star investigators, and the wider community in general. Particular attention is paid to the techniques developed for removing magnetic interference generated by the solar arrays on the first (equatorial orbiting) spacecraft. Results from the first year of operations are reviewed in the context of combined observations by Double Star and Cluster, and examples given from the different regions visited by the spacecraft to date.

151 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of the instrumentation used to measure the magnetic field on the four Cluster spacecraft and an overview the performance of the operational modes used in flight.
Abstract: . The accurate measurement of the magnetic field along the orbits of the four Cluster spacecraft is a primary objective of the mission. The magnetic field is a key constituent of the plasma in and around the magnetosphere, and it plays an active role in all physical processes that define the structure and dynamics of magnetospheric phenomena on all scales. With the four-point measurements on Cluster, it has become possible to study the three-dimensional aspects of space plasma phenomena on scales commeasurable with the size of the spacecraft constellation, and to distinguish temporal and spatial dependences of small-scale processes. We present an overview of the instrumentation used to measure the magnetic field on the four Cluster spacecraft and an overview the performance of the operational modes used in flight. We also report on the results of the preliminary in-orbit calibration of the magnetometers; these results show that all components of the magnetic field are measured with an accuracy approaching 0.1 nT. Further data analysis is expected to bring an even more accurate determination of the calibration parameters. Several examples of the capabilities of the investigation are presented from the commissioning phase of the mission, and from the different regions visited by the spacecraft to date: the tail current sheet, the dusk side magnetopause and magnetosheath, the bow shock and the cusp. We also describe the data processing flow and the implementation of data distribution to other Cluster investigations and to the scientific community in general. Key words. Interplanetary physics (instruments and techniques) – magnetospheric physics (magnetospheric configuration and dynamics) – space plasma physics (shock waves)

1,218 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state.
Abstract: In this review we will focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Ulysses’ high latitude observations and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD) turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.

1,212 citations

Journal ArticleDOI
TL;DR: The THEMIS Fluxgate Magnetometer (FGM) as discussed by the authors was designed to study abrupt reconfigurations of the Earth's magnetosphere during the substorm onset phase and is capable of detecting variations of the magnetic field with amplitudes of 0.01 nT.
Abstract: The THEMIS Fluxgate Magnetometer (FGM) measures the background magnetic field and its low frequency fluctuations (up to 64 Hz) in the near-Earth space. The FGM is capable of detecting variations of the magnetic field with amplitudes of 0.01 nT, and it is particularly designed to study abrupt reconfigurations of the Earth’s magnetosphere during the substorm onset phase. The FGM uses an updated technology developed in Germany that digitizes the sensor signals directly and replaces the analog hardware by software. Use of the digital fluxgate technology results in lower mass of the instrument and improved robustness. The present paper gives a description of the FGM experimental design and the data products, the extended calibration tests made before spacecraft launch, and first results of its magnetic field measurements during the first half year in space. It is also shown that the FGM on board the five THEMIS spacecraft well meets and even exceeds the required conditions of the stability and the resolution for the magnetometer.

1,198 citations

Journal ArticleDOI
TL;DR: The THEMIS instrument as discussed by the authors is designed to measure the ion and electron distribution functions over the energy range from a few eV up to 30 keV for electrons and 25 kV for ions, and it consists of a pair of electrostatic analyzers with common 180°×6° fields-of-view that sweep out 4π steradians each 3 s spin period.
Abstract: The THEMIS plasma instrument is designed to measure the ion and electron distribution functions over the energy range from a few eV up to 30 keV for electrons and 25 keV for ions. The instrument consists of a pair of “top hat” electrostatic analyzers with common 180°×6° fields-of-view that sweep out 4π steradians each 3 s spin period. Particles are detected by microchannel plate detectors and binned into six distributions whose energy, angle, and time resolution depend upon instrument mode. On-board moments are calculated, and processing includes corrections for spacecraft potential. This paper focuses on the ground and in-flight calibrations of the 10 sensors on five spacecraft. Cross-calibrations were facilitated by having all the plasma measurements available with the same resolution and format, along with spacecraft potential and magnetic field measurements in the same data set. Lessons learned from this effort should be useful for future multi-satellite missions.

1,031 citations

Journal ArticleDOI
TL;DR: The Super Dual Auroral Radar Network (SuperDARN) as discussed by the authors has been operating as an international co-operative organization for over 10 years and has been successful in addressing a wide range of scientific questions concerning processes in the magnetosphere, ionosphere, thermosphere, and mesosphere, as well as general plasma physics questions.
Abstract: The Super Dual Auroral Radar Network (SuperDARN) has been operating as an international co-operative organization for over 10 years. The network has now grown so that the fields of view of its 18 radars cover the majority of the northern and southern hemisphere polar ionospheres. SuperDARN has been successful in addressing a wide range of scientific questions concerning processes in the magnetosphere, ionosphere, thermosphere, and mesosphere, as well as general plasma physics questions. We commence this paper with a historical introduction to SuperDARN. Following this, we review the science performed by SuperDARN over the last 10 years covering the areas of ionospheric convection, field-aligned currents, magnetic reconnection, substorms, MHD waves, the neutral atmosphere, and E-region ionospheric irregularities. In addition, we provide an up-to-date description of the current network, as well as the analysis techniques available for use with the data from the radars. We conclude the paper with a discussion of the future of SuperDARN, its expansion, and new science opportunities.

690 citations