scispace - formally typeset
Search or ask a question
Author

E. H. Pryde

Bio: E. H. Pryde is an academic researcher from United States Department of Agriculture. The author has contributed to research in topics: Soybean oil & Catalysis. The author has an hindex of 15, co-authored 31 publications receiving 2888 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors showed that the conversion to methyl, ethyl and butyl esters from cottonseed, peanut, soybean and sunflower oils can be done in 1 hr with an alkaline catalyst.
Abstract: Transesterification reaction variables that affect yield and purity of the product esters from cottonseed, peanut, soybean and sunflower oils include molar ratio of alcohol to vegetable oil, type of catalyst (alkaline vs acidic), temperature and degree of refinement of the vegetable oil. With alkaline catalysts (either sodium hydroxide or methoxide), temperatures of 60 C or higher, molar ratios of at least 6 to 1 and with fully refined oils, conversion to methyl, ethyl and butyl esters was essentially complete in 1 hr. At moderate temperatures (32 C), vegetable oils were 99% transesterified in ca. 4 hr with an alkaline catalyst. Transesterification by acid catalysis was much slower than by alkali catalysis. Although the crude oils could be transesterified, ester yields were reduced because of gums and extraneous material present in the crude oils.

1,990 citations

Journal ArticleDOI
TL;DR: In this article, thermally decomposed soybean oil was distilled in air or in nitrogen sparge with standard ASTM distillation apparatus, and the results showed that approximately 75% of the products were made up of alkanes, alkenes, aromatics and carboxylic acids with carbon numbers ranging from 4 to more than 20.
Abstract: Soybean oil was thermally decomposed and distilled in air or in nitrogen sparge with standard ASTM distillation apparatus. GC-MS analysis showed that approximately 75% of the products were made up of alkanes, alkenes, aromatics and carboxylic acids with carbon numbers ranging from 4 to more than 20. Fuel properties of the pyrolyzed materials were characterized and compared with those of the parent oil. The pyrolyzates had lower viscosities and higher cetane numbers than the parent vegetable oil. Thermally decomposed soybean oil shows promise as alternative fuel for the direct-injection diesel engine.

268 citations

Journal ArticleDOI
TL;DR: Rapport succinct de synthese des communications consacrees a la preparation and lutilisation d'huiles vegetales comme carburant Diesel presentees a un Symposium tenu a Toronto en mai 1982.
Abstract: Rapport succinct de synthese des communications consacrees a la preparation et l'utilisation d'huiles vegetales comme carburant Diesel presentees a un Symposium tenu a Toronto en mai 1982

142 citations

Journal ArticleDOI
TL;DR: In this article, a nonionic sunflower oil-aqueous ethanol microemulsion was formulated, characterized and evaluated as a fuel in a direct injection, turbocharged, intercooled, 4-cylinder Allis-Chalmers diesel engine during a 200 hr EMA cycle laboratory screening endurance test.
Abstract: A nonionic sunflower oil-aqueous ethanol microemulsion was formulated, characterized and evaluated as a fuel in a direct injection, turbocharged, intercooled, 4-cylinder Allis-Chalmers diesel engine during a 200 hr EMA cycle laboratory screening endurance test. Differences in engine operation between a baseline Phillips 2D reference fuel and the experimental fuel were observed. The major problem experienced while operating with the microemulsion was an incomplete combustion process at low-load engine operation. Significant lubricating oil dilution was observed initially, followed by an abnormal increase in the viscosity of the lubricative oil. Heavier carbon residue on the piston lands, in the piston ring grooves and in the intake ports was noted. In addition, premature injection-nozzle deterioration (sticking of the needle) was experienced. At present, the sunflower oil-aqueous ethanol microemulsion studied cannot be recommended for long-term use in a direct-injection diesel engine, but further modifications in formulation may produce acceptable sunflower oil microemulsions as alternative diesel fuels.

104 citations

Journal ArticleDOI
TL;DR: In this article, a rapid quantitative capillary gas Chromatographic method was developed for studying transesterification of soybean oil (SBO) to fatty esters, and the effect of carrier gas flow on reproducibility was determined.
Abstract: A rapid quantitative capillary gas Chromatographic method has been developed for studying transesterification of soybean oil (SBO) to fatty esters. Standard solutions containing methyl linoleate, mono- , di- and trilinolein were analyzed with a 1.8 m X 0.32 mm SE- 30 fused silica column. The effect of carrier gas flow on reproducibility was determined. Prior to analysis, mono- (MG) and diglycerides (DG) were silylated with N,O- bis(trimethylsilyl) trifluoroacetamide.Tridecanoin was used as an internal standard. From plots of area and weight relationships, slopes and intercepts for all four compound classes were determined. Agreement between the measured and calculated compositions of the standard solutions was good; the overall standard deviation was 0.4. Slopes and intercepts also were determined for SBO and its methyl and butyl esters. Complete separation of ester, MG, DG and triglyceride was obtained in 12 min by temperature programming from 160 to 350 C. This method of analysis gave excellent results when used in a kinetic study of SBO transesterification.

99 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: In this article, the transesterification reaction is aected by molar ratio of glycerides to alcohol, catalysts, reaction temperature, reaction time and free fatty acids and water content of oils or fats.

4,902 citations

Journal ArticleDOI
TL;DR: In this paper, various methods of preparation of biodiesel with different combination of oil and catalysts have been described and technical tools and processes for monitoring the transesterification reactions like TLC, GC, HPLC, GPC, 1H NMR and NIR have also been summarized.
Abstract: Biodiesel is gaining more and more importance as an attractive fuel due to the depleting fossil fuel resources. Chemically biodiesel is monoalkyl esters of long chain fatty acids derived from renewable feed stock like vegetable oils and animal fats. It is produced by transesterification in which, oil or fat is reacted with a monohydric alcohol in presence of a catalyst. The process of transesterification is affected by the mode of reaction condition, molar ratio of alcohol to oil, type of alcohol, type and amount of catalysts, reaction time and temperature and purity of reactants. In the present paper various methods of preparation of biodiesel with different combination of oil and catalysts have been described. The technical tools and processes for monitoring the transesterification reactions like TLC, GC, HPLC, GPC, 1H NMR and NIR have also been summarized. In addition, fuel properties and specifications provided by different countries are discussed.

3,232 citations

Journal ArticleDOI
TL;DR: In this article, a review of the production, characterization and current statuses of vegetable oil and biodiesel as well as the experimental research work carried out in various countries is presented.

2,891 citations