scispace - formally typeset
Search or ask a question
Author

E. Hagley

Bio: E. Hagley is an academic researcher from École Normale Supérieure. The author has contributed to research in topics: Rydberg atom & Rabi cycle. The author has an hindex of 4, co-authored 6 publications receiving 2982 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The decoherence phenomenon transforming this superposition into a statistical mixture was observed while it unfolded, providing a direct insight into a process at the heart of quantum measurement.
Abstract: A mesoscopic superposition of quantum states involving radiation fields with classically distinct phases was created and its progressive decoherence observed. The experiment involved Rydberg atoms interacting one at a time with a few photon coherent field trapped in a high $Q$ microwave cavity. The mesoscopic superposition was the equivalent of an `` $\mathrm{atom}+\mathrm{measuring}\mathrm{apparatus}$'' system in which the ``meter'' was pointing simultaneously towards two different directions---a ``Schr\"odinger cat.'' The decoherence phenomenon transforming this superposition into a statistical mixture was observed while it unfolded, providing a direct insight into a process at the heart of quantum measurement.

1,324 citations

Journal ArticleDOI
TL;DR: This investigation of the excited levels of the atom-cavity system reveals nonlinear quantum features at extremely low field strengths.
Abstract: We have observed the Rabi oscillation of circular Rydberg atoms in the vacuum and in small coherent fields stored in a high Q cavity. The signal exhibits discrete Fourier components at frequencies proportional to the square root of successive integers. This provides direct evidence of field quantization in the cavity. The weights of the Fourier components yield the photon number distribution in the field. This investigation of the excited levels of the atom-cavity system reveals nonlinear quantum features at extremely low field strengths.

866 citations

Journal ArticleDOI
TL;DR: In this paper, a pair of atoms were prepared in an entangled state of the Einstein-Podolsky-Rosen (EPR) type by the exchange of a single photon between the atoms in a high $Q$ cavity.
Abstract: Pairs of atoms have been prepared in an entangled state of the Einstein-Podolsky-Rosen (EPR) type. They were produced by the exchange of a single photon between the atoms in a high $Q$ cavity. The atoms, entangled in a superposition involving two different circular Rydberg states, were separated by a distance of the order of 1 cm. At variance with most previous EPR experiments, this one involves massive particles. It can be generalized to three or more atoms and opens the way to new tests of nonlocality in mesoscopic quantum systems.

660 citations

Journal ArticleDOI
TL;DR: In this paper, the quantum information carried by a two-level atom was transferred to a high- $Q$ cavity and, after a delay, to another atom, and it was realized in this way a quantum memory made of a field in a superposition of 0 and 1 photon Fock states.
Abstract: The quantum information carried by a two-level atom was transferred to a high- $Q$ cavity and, after a delay, to another atom. We realized in this way a quantum memory made of a field in a superposition of 0 and 1 photon Fock states. We measured the ``holding time'' of this memory corresponding to the decay of the field intensity or amplitude at the single photon level. This experiment implements a step essential for quantum information processing operations.

252 citations

Proceedings ArticleDOI
03 May 1998
TL;DR: In this paper, the Rabi oscillation of a single excited atom emitting a photon in an initially empty cavity on a transition between two adjacent Rydberg levels was used to prepare a new kind of EPR pair involving two entangled massive particles.
Abstract: Summary form only given. The preparation of simple entangled quantum systems and the demonstration of their nonclassical properties has been a challenging goal since the early days of quantum mechanics and the famous Einstein Poldolsky Rosen (ERR) paper. Using "circular Rydberg atoms" strongly interacting with a zero or one-photon field stored in a microwave superconducting cavity, we have been able to prepare a new kind of EPR pair involving two entangled massive particles. The entanglement originates from the Rabi oscillation of a single excited atom emitting a photon in an initially empty cavity on a transition between two adjacent Rydberg levels.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the Bose-Einstein condensation of dilute gases in traps from a theoretical perspective and provided a framework to understand the main features of the condensation and role of interactions between particles.
Abstract: The phenomenon of Bose-Einstein condensation of dilute gases in traps is reviewed from a theoretical perspective. Mean-field theory provides a framework to understand the main features of the condensation and the role of interactions between particles. Various properties of these systems are discussed, including the density profiles and the energy of the ground-state configurations, the collective oscillations and the dynamics of the expansion, the condensate fraction and the thermodynamic functions. The thermodynamic limit exhibits a scaling behavior in the relevant length and energy scales. Despite the dilute nature of the gases, interactions profoundly modify the static as well as the dynamic properties of the system; the predictions of mean-field theory are in excellent agreement with available experimental results. Effects of superfluidity including the existence of quantized vortices and the reduction of the moment of inertia are discussed, as well as the consequences of coherence such as the Josephson effect and interference phenomena. The review also assesses the accuracy and limitations of the mean-field approach.

4,782 citations

Journal ArticleDOI
11 Dec 1997-Nature
TL;DR: In this article, the authors demonstrated the feasibility of quantum teleportation over arbitrary distances of the state of a quantum system by using a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon.
Abstract: Quantum teleportation — the transmission and reconstruction over arbitrary distances of the state of a quantum system — is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.

4,232 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that many of the symptoms of classicality can be induced in quantum systems by their environments, which leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information.
Abstract: as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) of the symptoms of classicality can be induced in quantum systems by their environments. Thus decoherence is caused by the interaction in which the environment in effect monitors certain observables of the system, destroying coherence between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly nonlocal ''Schrodinger-cat states.'' The classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit. Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation. Only the preferred pointer observable of the apparatus can store information that has predictive power. When the measured quantum system is microscopic and isolated, this restriction on the predictive utility of its correlations with the macroscopic apparatus results in the effective ''collapse of the wave packet.'' The existential interpretation implied by einselection regards observers as open quantum systems, distinguished only by their ability to acquire, store, and process information. Spreading of the correlations with the effectively classical pointer states throughout the environment allows one to understand ''classical reality'' as a property based on the relatively objective existence of the einselected states. Effectively classical pointer states can be ''found out'' without being re-prepared, e.g, by intercepting the information already present in the environment. The redundancy of the records of pointer states in the environment (which can be thought of as their ''fitness'' in the Darwinian sense) is a measure of their classicality. A new symmetry appears in this setting. Environment-assisted invariance or envariance sheds new light on the nature of ignorance of the state of the system due to quantum correlations with the environment and leads to Born's rules and to reduced density matrices, ultimately justifying basic principles of the program of decoherence and einselection.

3,499 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the original theory and its improvements, and a few examples of experimental two-qubit gates are given, and the use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
Abstract: Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.

2,483 citations