scispace - formally typeset
Search or ask a question
Author

E. Kingston

Bio: E. Kingston is an academic researcher. The author has contributed to research in topics: Deep hole drilling & Ultimate tensile strength. The author has an hindex of 1, co-authored 1 publications receiving 4 citations.

Papers
More filters
Proceedings ArticleDOI
01 Jan 2010
TL;DR: In this paper, the residual stresses in cladded steel specimens using deep hole drilling (DHD) and block removal and surface layering (BRSL) techniques were measured in the A533B steel substrate and cladded with Type 304 stainless steel.
Abstract: Residual stresses were measured in cladded steel specimens using deep hole drilling (DHD) and block removal and surface layering (BRSL) techniques. The samples consisted of a A533B steel substrate and cladded with Type 304 stainless steel using two different welding techniques; electro-slag (ESW) and submerged welding (SAW). Two SAW samples were created; one with a single layer of weld and a second with a double layer of welding. Only a single weld layer of ESW was used on another sample. All three samples were subjected to post-weld heat treatment prior to measurement. The measured residual stress distributions revealed (as expected) tensile stresses in the clad. However, the DHD method measured compressive stresses in the substrate adjacent to the clad for the single layer ESW and SAW welds. In contrast, the BRSL method found that the residual stresses in the substrate were close to zero or approximately tensile. The measurements are compared with results obtained from finite element (FE) simulations of the welding and PWHT treatment. The predicted tensile residual stresses in the clad were found to be larger than the measurements while in the substrate the FE analysis did not predict the measured compressive stresses.Copyright © 2010 by ASME

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the residual stress in nuclear reactor pressure vessel steel clad with nickel-based alloy and investigates the interaction between residual and thermal stresses during thermal shock were made on two plates of SA508 Grade 4N steel, clad with Alloy 82 nickelbased alloy.
Abstract: This paper characterises the residual stress in nuclear reactor pressure vessel steel clad with nickel-based alloy and investigates the interaction between residual and thermal stresses during thermal shock. Residual stress measurements were made on two plates of SA508 Grade 4N steel, clad with Alloy 82 nickel-based alloy. The techniques used to measure the residual stresses were: deep hole drilling, centre hole drilling, and the contour method. One plate was as-welded, the other post-weld heat-treated. The post-weld heat-treated plate was subjected to thermal shock by heating it up and then spraying the surface of the cladding with cold water. The residual stress was measured again afterwards. A finite element simulation was made to investigate the physical mechanisms causing residual stress redistribution during thermal shock. Thermal shock caused significant residual stress redistribution in the cladding due to elastic-plastic interaction between the thermal stress and the cladding residual stress. The results demonstrate that an assessment of the safety of a reactor pressure vessel during thermal shock could be conservative for small surface defects if it is assumed that residual and thermal stresses combine elastically.

13 citations

Journal ArticleDOI
TL;DR: This study investigates the evolution of welding residual stress during weld-overlay cladding for hydrogenation reactors using the finite element method (FEM) and a blind hole method is applied to verify the proposed model.
Abstract: Hydrogenation reactors are important oil-refining equipment that operate in high-temperature and high-pressure hydrogen environments and are commonly composed of 2.25Cr–1Mo–0.25V steel. For a hydrogenation reactor with a plate-welding structure, the processes and effects of welding residual stress (WRS) are very complicated due to the complexity of the welding structure. These complex welding residual stress distributions affect the service life of the equipment. This study investigates the evolution of welding residual stress during weld-overlay cladding for hydrogenation reactors using the finite element method (FEM). A blind hole method is applied to verify the proposed model. Unlike the classical model, WRS distribution in a cladding/substrate system in this study was found to be divided into three regions: the cladding layer, the stress-affected layer (SAL), and the substrate in this study. The SAL is defined as region coupling affected by the stresses of the cladding layer and substrate at the same time. The evolution of residual stress in these three regions was thoroughly analyzed in three steps with respect to the plastic-strain state of the SAL. Residual stress was rapidly generated in Stage 1, reaching about −440 MPa compression stress in the SAL region at the end of this stage after 2.5 s. After cooling for 154 s, at the end of Stage 2, the WRS distribution was fundamentally shaped except for in the cladding layer. The interface between the cladding layer and substrate is the most heavily damaged region due to the severe stress gradient and drastic change in WRS during the welding process. The effects of substrate thickness and preheat temperature were evaluated. The final WRS in the cladding layer first increased with the increase in substrate thickness, and then started to decline when substrate thickness reached a large-enough value. WRS magnitudes in the substrate and SAL decreased with the increase in preheat temperature and substrate thickness. Compressive WRS in the cladding layer, on the other hand, increased with the increase in preheat temperature.

3 citations

Proceedings ArticleDOI
14 Jul 2013
TL;DR: In this paper, the authors measured residual stresses in an austenitic steel cladded plate that was fabricated from a ferritic steel base plate with three layers of weld metal cladding deposited on the top surface, and measured the map of longitudinal residual stresses by sectioning the test component along a transverse plane at mid-length.
Abstract: In pressure vessels stainless steel weld-overlay cladding is a widely used technique to provide a protective barrier between the corrosive environment and the ferritic low alloy base metal. While the cladding layers enhance corrosion resistance, the induced residual stresses due to the deposition of weld layers are of major concern. It is of paramount importance to understand how residual stresses interact with service loading when the vessel is pressurized. Therefore, knowledge of the initial residual stresses due to cladding is an essential input for structural integrity assessment of pressure vessels. In the present paper the Contour Method was conducted to measure residual stresses in an austenitic steel cladded plate that was fabricated from a ferritic steel base plate with three layers of austenitic stainless steel weld metal cladding deposited on the top surface. The Contour Method was chosen for various reasons. First, it provides a full 2D variation of residual stresses over the plane of interest. Second, it is not limited by the thickness of components or microstructural variations and finally it should potentially capture the variation of residual stresses in each individual weld beads and due to the possible phase transformation in the ferritic base material. The map of longitudinal residual stresses was measured by sectioning the test component along a transverse plane at mid-length. The measured residual stresses were in good agreement with published results in the open literature

3 citations

Book ChapterDOI
01 Jan 2011
TL;DR: In this paper, residual stress measurements and modelling within the cladding and J-groove weld of Control Rod Drive (CRD) specimens in the as-welded and Post Weld Heat Treated (PWHT) states are presented.
Abstract: This paper presents results of residual stress measurements and modelling within the cladding and J-groove weld of Control Rod Drive (CRD) specimens in the as-welded and Post Weld Heat Treated (PWHT) states. Knowledge of the residual stresses present in CRD nozzles is critical when modelling the fracture mechanics of failures of nuclear power plant components to dictate inspections intervals and optimise plant downtime. The specimens comprised of ferritic steel blocks with 309L stainless steel cladding and a single J-groove weld attaching the 304 stainless steel nozzles. Multiple measurements were made through the thickness of the specimens in order to give biaxial residual stress profiles through all the different fusion boundaries. The results show the effect of PWHT in reducing residual stresses both in the weld and ferritic material. The beneficial use of measurements is highlighted to provide confidence in the modelled results and prevent over conservatism in integrity calculations, costing unnecessary time and money.