scispace - formally typeset
Search or ask a question
Author

E.M. Royer

Bio: E.M. Royer is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Ad hoc wireless distribution service & Optimized Link State Routing Protocol. The author has an hindex of 10, co-authored 10 publications receiving 10023 citations. Previous affiliations of E.M. Royer include University of California, Berkeley.

Papers
More filters
Journal ArticleDOI
TL;DR: Routing protocols for ad hoc networks are examined by providing an overview of eight different protocols by presenting their characteristics and functionality, and then a comparison and discussion of their respective merits and drawbacks are provided.
Abstract: An ad hoc mobile network is a collection of mobile nodes that are dynamically and arbitrarily located in such a manner that the interconnections between nodes are capable of changing on a continual basis. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This article examines routing protocols for ad hoc networks and evaluates these protocols based on a given set of parameters. The article provides an overview of eight different protocols by presenting their characteristics and functionality, and then provides a comparison and discussion of their respective merits and drawbacks.

4,278 citations

Proceedings ArticleDOI
26 Mar 2000
TL;DR: It is demonstrated that even though DSR and AODV share a similar on-demand behavior the differences in the protocol mechanics can lead to significant performance differentials.
Abstract: Ad hoc networks are characterized by multi-hop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of two prominent on-demand routing protocols for mobile ad hoc networks - dynamic source routing (DSR) and ad hoc on-demand distance vector routing (AODV). A detailed simulation model with MAC and physical layer models is used to study inter-layer interactions and their performance implications. We demonstrate that even though DSR and AODV share a similar on-demand behavior the differences in the protocol mechanics can lead to significant performance differentials. The performance differentials are analyzed using varying network load, mobility and network size. Based on the observations, we make recommendations about how the performance of either protocol can be improved.

1,629 citations

Journal ArticleDOI
TL;DR: It is demonstrated that even though DSR and AODV share similar on-demand behavior, the differences in the protocol mechanics can lead to significant performance differentials.
Abstract: Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of two prominent on-demand routing protocols for mobile ad hoc networks: dynamic source routing (DSR) and ad hoc on-demand distance vector routing (AODV). A detailed simulation model with MAC and physical layer models is used to study interlayer interactions and their performance implications. We demonstrate that even though DSR and AODV share similar on-demand behavior, the differences in the protocol mechanics can lead to significant performance differentials. The performance differentials are analyzed using varying network load, mobility, and network size. Based on the observations, we make recommendations about how the performance of either protocol can be improved.

1,470 citations

Proceedings ArticleDOI
01 Aug 1999
TL;DR: Ad-hoc On-Demand Distance Vector Routing is extended to offer novel multicast capabilities which follow naturally from the way AODV establishes unicast routes.
Abstract: An ad-hoc network is the cooperative engagement of a collection of (typically wireless) mobile nodes without the required intervention of any centralized access point or existing infrastructure. To provide optimal communication ability, a routing protocol for such a dynamic self-starting network must be capable of unicast, broadcast, and multicast. In this paper we extend Ad-hoc On-Demand Distance Vector Routing (AODV), an algorithm for the operation of such ad-hoc networks, to offer novel multicast capabilities which follow naturally from the way AODV establishes unicast routes. AODV builds multicast trees as needed (i.e., on-demand) to connect multicast group members. Control of the multicast tree is distributed so that there is no single point of failure. AODV provides loop-free routes for both unicast and multicast, even while repairing broken links. We include an evaluation methodology and simulation results to validate the correct and efficient operation of the AODV algorithm.

1,245 citations

12 Nov 2001
TL;DR: In this article, a logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument to provide an indication of formation porosity which is substantially independent of the formation salinity.
Abstract: A logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument. The radiation detectors are gated differently from each other to provide an indication of formation porosity which is substantially independent of the formation salinity. In the preferred embodiment, the electrical signals indicative of radiation detected by the long-spaced detector are gated for almost the entire interval between neutron pulses and the short-spaced signals are gated for a significantly smaller time interval which commences soon after the termination of a given neutron burst. The signals from the two detectors are combined in a ratio circuit for determination of porosity.

574 citations


Cited by
More filters
01 Jul 2003
TL;DR: A logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument to provide an indication of formation porosity which is substantially independent of the formation salinity.
Abstract: The Ad hoc On-Demand Distance Vector (AODV) routing protocol is intended for use by mobile nodes in an ad hoc network. It offers quick adaptation to dynamic link conditions, low processing and memory overhead, low network utilization, and determines unicast routes to destinations within the ad hoc network. It uses destination sequence numbers to ensure loop freedom at all times (even in the face of anomalous delivery of routing control messages), avoiding problems (such as "counting to infinity") associated with classical distance vector protocols.

11,490 citations

Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
Jeffrey O. Kephart1, David M. Chess1
TL;DR: A 2001 IBM manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet.
Abstract: A 2001 IBM manifesto observed that a looming software complexity crisis -caused by applications and environments that number into the tens of millions of lines of code - threatened to halt progress in computing. The manifesto noted the almost impossible difficulty of managing current and planned computing systems, which require integrating several heterogeneous environments into corporate-wide computing systems that extend into the Internet. Autonomic computing, perhaps the most attractive approach to solving this problem, creates systems that can manage themselves when given high-level objectives from administrators. Systems manage themselves according to an administrator's goals. New components integrate as effortlessly as a new cell establishes itself in the human body. These ideas are not science fiction, but elements of the grand challenge to create self-managing computing systems.

6,527 citations

01 Jan 2002
TL;DR: A survey of mobility models that are used in the simulations of ad hoc networks and illustrates how the performance results of an ad hoc network protocol drastically change as a result of changing the mobility model simulated.

4,618 citations

Journal ArticleDOI
01 Aug 2002
TL;DR: In this paper, a survey of mobility models used in the simulations of ad hoc networks is presented, which illustrate the importance of choosing a mobility model in the simulation of an ad hoc network protocol.
Abstract: In the performance evaluation of a protocol for an ad hoc network, the protocol should be tested under realistic conditions including, but not limited to, a sensible transmission range, limited buffer space for the storage of messages, representative data traffic models, and realistic movements of the mobile users (i.e., a mobility model). This paper is a survey of mobility models that are used in the simulations of ad hoc networks. We describe several mobility models that represent mobile nodes whose movements are independent of each other (i.e., entity mobility models) and several mobility models that represent mobile nodes whose movements are dependent on each other (i.e., group mobility models). The goal of this paper is to present a number of mobility models in order to offer researchers more informed choices when they are deciding upon a mobility model to use in their performance evaluations. Lastly, we present simulation results that illustrate the importance of choosing a mobility model in the simulation of an ad hoc network protocol. Specifically, we illustrate how the performance results of an ad hoc network protocol drastically change as a result of changing the mobility model simulated.

4,391 citations