scispace - formally typeset
Search or ask a question
Author

E. MacKenzie

Bio: E. MacKenzie is an academic researcher from Boston College. The author has contributed to research in topics: Ionosphere & Scintillation. The author has an hindex of 20, co-authored 28 publications receiving 1727 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an extensive VHF/UHF scintillation data base covering the frequency range of VHF to a few gigahertz has been utilized to determine the magnitudes of phase and intensity scintillations and their temporal/spatial structures during the sunspot maximum and minimum periods.
Abstract: An extensive VHF/UHF scintillation data base covering the frequency range of VHF to a few gigahertz has been utilized to determine the magnitudes of phase and intensity scintillations and their temporal/spatial structures during the sunspot maximum and minimum periods. The equatorial portion of the study has been based on geostationary satellite observations at Huancayo, a station on the magnetic equator, and at Ascension Island, which is an equatorial anomaly station having an extremely disturbed irregularity environment. The high-latitude part of the study is based on quasistationary satellite measurements at a polar cap location (Thule) and two auroral locations (Goose Bay and Tromso). The Tromso observations are augmented with the Defense Nuclear Agency HiLat satellite beacon measurements during the solar minimum period. The data indicate a strong solar cycle control of scintillation activity at all locations, resulting in a drastic reduction of the magnitudes and occurrence of scintillations during the current solar minimum period. This pattern is consistent with both a reduction of F region ionization density and a reduction of irregularity generation in the solar minimum period. At the magnetic equator the magnitude of scintillations at 1.5 GHz seldom exceeds 3 dB with the percentage occurrence > 2 dB varying from 70% during high sunspot conditions to 30% during low sunspot conditions. At the crest of the equatorial anomaly, on the other hand, during the solar maximum in 1979, fades of 20 dB at 1.5 GHz are observed 30% of the time. At a decreased level of solar activity in 1982, a similar occurrence level is obtained at 1.5 GHz for fade levels of only 5 dB. During the solar minimum period, 1.5-GHz scintillations are virtually absent. Phase scintillation measurements made at Ascension Island indicate that the median value of rms phase deviation is about 5 rad for detrend intervals of 100 s. In the auroral region, during the solar maximum period under magnetically disturbed conditions, the median values of scintillation fades and rms phase deviation (82-s detrend) at 250 MHz are observed to be 15 dB and 3 rad, respectively. At Thule, located deep within the polar cap, the median values of scintillation fades and rms phase deviation at 250 MHz attain values as large as 20 dB and 4 rad during the sunspot maximum period. Unlike Ascension Island the scintillation activity at high-latitude stations exhibits a threshold effect and does not decrease until 1983. However, in 1986 with sunspot numbers in the vicinity of 10, fade levels as low as 5 dB at 250 MHz are recorded in the polar cap and auroral stations only 5% of the time. It is noted that at auroral locations the most prominent feature, namely the existence of magnetic L shell-aligned irregularity sheets, is equally evident at both sunspot maximum and minimum.

306 citations

Journal ArticleDOI
TL;DR: In this article, the ionospheric effects of a halo coronal mass ejection (CME) initiated on the Sun on September 20, 1999, and causing the largest magnetic storm during this month on September 22, 23, and 24, 1999 were studied through their effects on a prototype of a Global Positioning System (GPS)-based navigation system called Wide Area Augmentation System (WAAS) and their impact on global VHF/UHF communication systems.
Abstract: In this paper we present a study of the ionospheric effects of a halo coronal mass ejection (CME) initiated on the Sun on September 20, 1999, and causing the largest magnetic storm during this month on September 22–23, 1999, with the hourly Dst index being −167 nT at ∼2400 UT on September 22. The recurrent CME on October 18 caused an even larger magnetic storm on October 22, 1999, with Dst of −231 nT at ∼0700 UT. The ionospheric effects of these two major magnetic storms are studied through their effects on a prototype of a Global Positioning System (GPS)-based navigation system called Wide Area Augmentation System (WAAS) being developed by the Federal Aviation Administration for use in the continental United States and their impact on global VHF/UHF communication systems. It is shown that the penetration of transient magnetospheric electric fields equatorward of the shielding region at midlatitudes, which have been well-correlated in the past with rapid changes in the well-known Dst index (or through its recently available high resolution 1-min counterpart the SYM-H index), can cause large increases of total electron content (TEC), TEC fluctuations, and saturated 250-MHz scintillation, and these, in turn, may have significant impacts on WAAS. The local time of Dst changes (and not just Dst magnitude) was found to be very important for WAAS, since the largest effects on TEC are seen near dusk. The prompt penetration of these magnetospheric electric fields all the way to the magnetic equator causes augmentation or inhibition of equatorial spread F. The global ionospheric response to these storms has been obtained from ground-based TEC observations with a GPS network and space-based in situ density and electric field measurements using the Republic of China Satellite-1 (ROCSAT-I) and several Defense Meteorological Satellite Program satellites. These prompt penetration electric fields cause VHF/UHF scintillations and GPS TEC variations at low latitudes in the specific longitude sector for which the early evening period corresponds to the time of rapid Dst variations and maximum Dst phase. The effects of the delayed ionospheric disturbance dynamo and those of decreased magnetospheric convection on postmidnight irregularity generation are shown to be confined to a part of the same longitude range that actively responded to the prompt penetration of electric fields in the early evening sector.

235 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the Scintillation network decision aid, which consists of two latitudinally dispersed stations, each of which uses spaced antenna scintillation receiving systems to monitor 250-MHz transmissions from two longitudinally separated geostationary satellites.
Abstract: The need to nowcast and forecast scintillation for the support of operational systems has been recently identified by the interagency National Space Weather Program. This issue is addressed in the present paper in the context of nighttime irregularities in the equatorial ionosphere that cause intense amplitude and phase scintillations of satellite signals in the VHF/UHF range of frequencies and impact satellite communication, Global Positioning System navigation, and radar systems. Multistation and multifrequency satellite scintillation observations have been used to show that even though equatorial scintillations vary in accordance with the solar cycle, the extreme day-to-day variability of unknown origin modulates the scintillation occurrence during all phases of the solar cycle. It is shown that although equatorial scintillation events often show correlation with magnetic activity, the major component of scintillation is observed during magnetically quiet periods. In view of the day-to-day variability of the occurrence and intensity of scintillating regions, their latitude extent, and their zonal motion, a regional specification and short-term forecast system based on real-time measurements has been developed. This system, named the Scintillation Network Decision Aid, consists of two latitudinally dispersed stations, each of which uses spaced antenna scintillation receiving systems to monitor 250-MHz transmissions from two longitudinally separated geostationary satellites. The scintillation index and zonal irregularity drift are processed on-line and are retrieved by a remote operator on the Internet. At the operator terminal the data are combined with an empirical plasma bubble model to generate three-dimensional maps of irregularity structures and two-dimensional outage maps for the region.

206 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the response of the equatorial ionosphere at dusk to the intense magnetic storms of 30 October 2003 and 20 November 2003, different aspects of which have been widely studied by the community.
Abstract: [1] We investigate the response of the equatorial ionosphere at dusk to the intense magnetic storms of 30 October 2003 and 20 November 2003, different aspects of which have been widely studied by the community. We present here a very complete set of space and ground-based diagnostics that provide the vertical and latitudinal structures of the ionosphere within the South Atlantic magnetic anomaly (SAMA) region and the contiguous parts of South America and Africa. We show that for both storms, the dusk sector corresponding to the universal time (UT) interval between the fast decrease of the SYM-H index and minimum SYM-H value determines uniquely the longitude interval populated by equatorial plasma bubbles and depletions. Further, we find that the UT of these storms is such that the ionospheric density perturbations occur in the SAMA region, which are most extended in latitude and altitude compared with other regions of the globe. In the dusk sector, the eastward penetration electric field, associated with rapid SYM-H decrease, adds to the postsunset eastward E-field because of the F region dynamo, which may be specially enhanced in this longitude interval because of the increased zonal conductivity gradient caused by energetic particle precipitation. This enhanced E-field at dusk causes a rapid uplift of the ionosphere and sets off plasma instabilities to form bubbles or bite-outs. The decreased ion density seen in the Defense Meteorological Satellite Program (DMSP) in situ data at 840 km indicates that the ionospheric plasma has been lifted above the DMSP altitude and transported away from the region by diffusion along magnetic field lines. Plasma bubbles and bite-outs impact satellite communication and navigation systems by introducing scintillations and steep density gradients. This paper corroborates that intense magnetic storms follow the framework, developed by Su. Basu et al. (2001) for moderate storms, that specifies the longitude interval in which such disturbances are most likely to occur.

130 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the simultaneous density and electric field spectra of convecting large-scale plasma density enhancements in the polar cap known as 'patches', in directions parallel and perpendicular to their antisunward convection.
Abstract: Using results of the in situ measurements made by the DE 2 satellite, the nature of plasma structuring at high latitudes, caused by the gradient drift instability process, is described. Using noon-midnight and dawn-dusk orbits of the DE 2 satellite, it was possible to examine the simultaneous density and electric field spectra of convecting large-scale plasma density enhancements in the polar cap known as 'patches', in directions parallel and perpendicular to their antisunward convection. The results provide evidence for the existence of at least two generic classes of instabilities operating in the high-latitude ionosphere: one driven by large-scale density gradients in a homogeneous convection field with respect to the neutrals, and the other driven by the structured convection field itself in an ambient ionosphere where density fluctuations are ubiquitous.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the current understanding and recent advances in the study of ionospheric storms with emphasis on the F2-region, and proposed a global first principle physical model to simulate the storm response of the coupled neutral and ionized upper atmospheric constituents.
Abstract: In this paper, our current understanding and recent advances in the study of ionospheric storms is reviewed, with emphasis on the F2-region. Ionospheric storms represent an extreme form of space weather with important effects on ground- and space-based technological systems. These phenomena are driven by highly variable solar and magnetospheric energy inputs to the Earth's upper atmosphere, which continue to provide a major difficulty for attempts now being made to simulate the detailed storm response of the coupled neutral and ionized upper atmospheric constituents using increasingly sophisticated global first principle physical models. Several major programs for coordinated theoretical and experimental study of these storms are now underway. These are beginning to bear fruit in the form of improved physical understanding and prediction of ionospheric storm effects at high, middle, and low latitude.

828 citations

Journal ArticleDOI
01 Feb 1971
TL;DR: In this article, a review of the available amplitude and phase scintillation data is presented, where the effect of magnetic activity, solar sunspot cycle, and time of day is shown for each three latitudinal sectors.
Abstract: Starting with post World War II studies of fading of radio star sources and continuing with fading of satellite signals of Sputnik, vast quantities of data have built up on the effect of ionospheric irregularities on signals from beyond the F layer. The review attempts to organize the available amplitude and phase scintillation data into equatorial, middle-, and high-latitude morphologies. The effect of magnetic activity, solar sunspot cycle, and time of day is shown for each of these three latitudinal sectors. The effect of the very high levels of solar flux during the past sunspot maximum of 1979-1981 is stressed. During these years unusually high levels of scintillation were noted near the peak of the Appleton equatorial anomaly (∼ ±15° away from the magnetic equator) as well as over polar latitudes. New data on phase fluctuations are summarized for the auroral zone with its sheet-like irregularity structure. One model is now available which will yield amplitude and phase predictions for varying sites and solar conditions. Other models, more limited in their output and use, are also available. The models are outlined with their limitations and data bases noted. New advances in morphology and in understanding the physics of irregularity development in the equatorial and auroral regions have taken place. Questions and unknowns in morphology and in the physics of irregularity development remain. These include the origin of the seeding sources of equatorial irregularities, the physics of development of auroral irregularity patches, and the morphology of F-layer irregularities at middle latitudes.

572 citations

Journal ArticleDOI
TL;DR: In this paper, the differences between CME-driven and CIR-driven geomagnetic storms are compared and twenty one differences between the two types of storms are tabulated, including the bow shock, the magnetosheath, the radiation belts, the ring current, the aurora, Earth's plasma sheet, magnetospheric convection, ULF pulsations, spacecraft charging in the magnetosphere, and the saturation of the polar cap potential.
Abstract: Twenty one differences between CME-driven geomagnetic storms and CIR-driven geomagnetic storms are tabulated. (CME-driven includes driving by CME sheaths, by magnetic clouds, and by ejecta; CIR-driven includes driving by the associated recurring high-speed streams.) These differences involve the bow shock, the magnetosheath, the radiation belts, the ring current, the aurora, the Earth's plasma sheet, magnetospheric convection, ULF pulsations, spacecraft charging in the magnetosphere, and the saturation of the polar cap potential. CME-driven storms are brief, have denser plasma sheets, have strong ring currents and Dst, have solar energetic particle events, and can produce great auroras and dangerous geomagnetically induced currents; CIR-driven storms are of longer duration, have hotter plasmas and stronger spacecraft charging, and produce high fluxes of relativistic electrons. Further, the magnetosphere is more likely to be preconditioned with dense plasmas prior to CIR-driven storms than it is prior to CME-driven storms. CME-driven storms pose more of a problem for Earth-based electrical systems; CIR-driven storms pose more of a problem for space-based assets.

555 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the impact of scintillations on GPS receiver design and use and present a review of GPS and ionospheric scintillation for scientists interested in space weather.
Abstract: [1] Ionospheric scintillations are one of the earliest known effects of space weather. Caused by ionization density irregularities, scintillating signals change phase unexpectedly and vary rapidly in amplitude. GPS signals are vulnerable to ionospheric irregularities and scintillate with amplitude variations exceeding 20 dB. GPS is a weak signal system and scintillations can interrupt or degrade GPS receiver operation. For individual signals, interruption is caused by fading of the in-phase and quadrature signals, making the determination of phase by a tracking loop impossible. Degradation occurs when phase scintillations introduce ranging errors or when loss of tracking and failure to acquire signals increases the dilution of precision. GPS scintillations occur most often near the magnetic equator during solar maximum, but they can occur anywhere on Earth during any phase of the solar cycle. In this article we review the subject of GPS and ionospheric scintillations for scientists interested in space weather and engineers interested in the impact of scintillations on GPS receiver design and use.

534 citations

Journal ArticleDOI
TL;DR: In this article, the seasonal maxima in scintillation activity coincide with the times of year when the solar terminator is most nearly aligned with the geomagnetic flux tubes, and the occurrence of plasma density irregularities responsible for scintillations is most likely when the integrated E-region Pedersen conductivity is changing most rapidly.
Abstract: An enigma of equatorial research has been the observed seasonal and longitudinal occurrence patterns of equatorial scintillations (and range-type spread F). We resolve this problem by showing that the seasonal maxima in scintillation activity coincide with the times of year when the solar terminator is most nearly aligned with the geomagnetic flux tubes. That is, occurrence of plasma density irregularities responsible for scintillations is most likely when the integrated E-region Pedersen conductivity is changing most rapidly. Hence the hitherto puzzling seasonal pattern of scintillation activity, at a given longitude, becomes a simple deterministic function of the magnetic declination and geographic latitude of the magnetic dip equator. This demonstrated relationship is consistent with equatorial irregularity generation by the collisional Rayleigh-Taylor instability and irregularity growth enhancement by the current convective and (wind-driven) gradient drift instabilities. Some discrepancies in this relationship, however, have been found in scintillation data obtained at lower radio frequencies (below, say, 300 MHz) that suggest the presence of other irregularity-influencing processes. The role of field-aligned currents, associated with the longitudinal gradient in integrated E-region Pedersen conductivity produced at the solar terminator, in equatorial irregularity generation via the current convective instability has not been discussed previously.

470 citations