scispace - formally typeset
Search or ask a question
Author

E. Piravandi

Bio: E. Piravandi is an academic researcher from MediGene. The author has contributed to research in topics: Gene & Chromosome 19. The author has an hindex of 5, co-authored 5 publications receiving 1679 citations.

Papers
More filters
Journal ArticleDOI
29 Jan 1998-Nature
TL;DR: Analysis of the sequence revealed an average gene density of one gene every 4.8 kilobases, and 54% of the predicted genes had significant similarity to known genes, and other interesting features were found, such as the sequence of a disease-resistance gene locus, the distribution of retroelements, and the frequent occurrence of clustered gene families.
Abstract: The plant Arabidopsis thaliana (Arabidopsis) has become an important model species for the study of many aspects of plant biology. The relatively small size of the nuclear genome and the availability of extensive physical maps of the five chromosomes provide a feasible basis for initiating sequencing of the five chromosomes. The YAC (yeast artificial chromosome)-based physical map of chromosome 4 was used to construct a sequence-ready map of cosmid and BAC (bacterial artificial chromosome) clones covering a 1.9-megabase (Mb) contiguous region, and the sequence of this region is reported here. Analysis of the sequence revealed an average gene density of one gene every 4.8 kilobases (kb), and 54% of the predicted genes had significant similarity to known genes. Other interesting features were found, such as the sequence of a disease-resistance gene locus, the distribution of retroelements, the frequent occurrence of clustered gene families, and the sequence of several classes of genes not previously encountered in plants.

832 citations

Journal ArticleDOI
Klaus F. X. Mayer1, C. Schüller1, R. Wambutt, George Murphy2  +230 moreInstitutions (21)
16 Dec 1999-Nature
TL;DR: Analysis of 17.38 megabases of unique sequence, representing about 17% of the Arabidopsis genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements.
Abstract: The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

411 citations

Journal ArticleDOI
29 May 1997-Nature
TL;DR: No correlation was found between G+C content and gene density along the chromosome, and their variations are random, so accurate verification procedures demonstrate that there are less than two errors per 10,000 base pairs in the published sequence.
Abstract: Here we report the sequence of 569,202 base pairs of Saccharomyces cerevisiae chromosome V. Analysis of the sequence revealed a centromere, two telomeres and 271 open reading frames (ORFs) plus 13 tRNAs and four small nuclear RNAs. There are two Ty1 transposable elements, each of which contains an ORF (included in the count of 271). Of the ORFs, 78 (29%) are new, 81 (30%) have potential homologues in the public databases, and 112 (41%) are previously characterized yeast genes.

372 citations

Journal ArticleDOI
29 May 1997-Nature
TL;DR: The possible evolutionary origins of this unexpected feature of yeast genome organization, found in cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae, are considered.
Abstract: In 1992 we started assembling an ordered library of cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae. At that time, only 49 genes were known to be located on this chromosome and we estimated that 80% to 90% of its genes were yet to be discovered. In 1993, a team of 20 European laboratories began the systematic sequence analysis of chromosome XIV. The completed and intensively checked final sequence of 784,328 base pairs was released in April, 1996. Substantial parts had been published before or had previously been made available on request. The sequence contained 419 known or presumptive protein-coding genes, including two pseudogenes and three retrotransposons, 14 tRNA genes, and three small nuclear RNA genes. For 116 (30%) protein-coding sequences, one or more structural homologues were identified elsewhere in the yeast genome. Half of them belong to duplicated groups of 6-14 loosely linked genes, in most cases with conserved gene order and orientation (relaxed interchromosomal synteny). We have considered the possible evolutionary origins of this unexpected feature of yeast genome organization.

80 citations

Journal ArticleDOI
R. Wambutt, George Murphy1, Guido Volckaert2, Thomas Pohl  +147 moreInstitutions (15)
TL;DR: The clustering of highly repetitive elements is a striking feature of the A. thaliana genome emerging from sequence and other analyses, indicating that local sequence duplication and subsequent divergence generates a significant proportion of gene families.

15 citations


Cited by
More filters
Journal ArticleDOI
14 Dec 2000-Nature
TL;DR: This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.
Abstract: The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.

8,742 citations

Journal ArticleDOI
TL;DR: A neural network-based tool, TargetP, for large-scale subcellular location prediction of newly identified proteins has been developed and it is estimated that 10% of all plant proteins are mitochondrial and 14% chloroplastic, and that the abundance of secretory proteins, in both Arabidopsis and Homo, is around 10%.

4,268 citations

Journal ArticleDOI
15 Dec 2000-Science
TL;DR: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms and reveals the evolutionary generation of diversity in the regulation of transcription.
Abstract: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

2,582 citations

Journal ArticleDOI
TL;DR: The WRKY proteins are a superfamily of transcription factors with up to 100 representatives in Arabidopsis that appear to be involved in the regulation of various physio-logical programs that are unique to plants, including pathogen defense, senescence and trichome development.

2,447 citations

Journal ArticleDOI
24 Apr 2003-Nature
TL;DR: A high-quality draft sequence of the N. crassa genome is reported, suggesting that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.
Abstract: Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes—more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca21 signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.

1,659 citations