scispace - formally typeset
Search or ask a question
Author

E. R. Kursinski

Bio: E. R. Kursinski is an academic researcher from University of Arizona. The author has contributed to research in topics: Radio occultation & Troposphere. The author has an hindex of 13, co-authored 34 publications receiving 2291 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the first systematic, extensive error analysis of the spacecraft radio occultation technique using a combination of analytical and simulation methods to establish a baseline accuracy for retrieved profiles of refractivity, geopotential, and temperature.
Abstract: The implementation of the Global Positioning System (GPS) network of satellites and the development of small, high-performance instrumentation to receive GPS signals have created an opportunity for active remote sounding of the Earth's atmosphere by radio occultation at comparatively low cost. A prototype demonstration of this capability has now been provided by the GPS/MET investigation. Despite using relatively immature technology, GPS/MET has been extremely successful [Ware et al., 1996; Kursinski et al., 1996], although there is still room for improvement. The aim of this paper is to develop a theoretical estimate of the spatial coverage, resolution, and accuracy that can be expected for atmospheric profiles derived from GPS occultations. We consider observational geometry, attenuation, and diffraction in defining the vertical range of the observations and their resolution. We present the first systematic, extensive error analysis of the spacecraft radio occultation technique using a combination of analytical and simulation methods to establish a baseline accuracy for retrieved profiles of refractivity, geopotential, and temperature. Typically, the vertical resolution of the observations ranges from 0.5 km in the lower troposphere to 1.4 km in the middle atmosphere. Results indicate that useful profiles of refractivity can be derived from ∼60 km altitude to the surface with the exception of regions less than 250 m in vertical extent associated with high vertical humidity gradients. Above the 250 K altitude level in the troposphere, where the effects of water are negligible, sub-Kelvin temperature accuracy is predicted up to ∼40 km depending on the phase of the solar cycle. Geopotential heights of constant pressure levels are expected to be accurate to ∼10 m or better between 10 and 20 km altitudes. Below the 250 K level, the ambiguity between water and dry atmosphere refractivity becomes significant, and temperature accuracy is degraded. Deep in the warm troposphere the contribution of water to refractivity becomes sufficiently large for the accurate retrieval of water vapor given independent temperatures from weather analyses [Kursinski et al., 1995]. The radio occultation technique possesses a unique combination of global coverage, high precision, high vertical resolution, insensitivity to atmospheric particulates, and long-term stability. We show here how these properties are well suited for several applications including numerical weather prediction and long-term monitoring of the Earth's climate.

1,249 citations

16 Jun 1994
TL;DR: In this paper, the authors provide a relatively comprehensive treatment of the mission and technical aspects of an Earth-orbiting radio occultation satellite, which can be used to recover profiles of the Earth's atmospheric refractivity, pressure, and temperature using small, dedicated and relatively low-cost space systems.
Abstract: This monograph is intended for readers with minimal background in radio science who seek a relatively comprehensive treatment of the mission and technical aspects of an Earth-orbiting radio occultation satellite. Part 1 (chapters 1-6) describes mission concepts and programmatic information; Part 2 (chapters 7-12) deals with the theoretical aspects of analyzing and interpreting radio occultation measurements. In this mission concept the navigation signals from a Global Positioning System (GPS) satellite that is being occulted by the Earth's limb are observed by a GPS flight receiver on board a low Earth orbiter (LEO) satellite. This technique can be used to recover profiles of the Earth's atmospheric refractivity, pressure, and temperature using small, dedicated, and relatively low-cost space systems. Chapter 2 summarizes the basic space system concepts of the limb-sounding technique and describes a low-cost strawman demonstration mission. Chapter 3 discusses some of the scientific benefits of using radio occultation on a suite of small satellites. Chapter 4 provides a more detailed discussion of several system elements in a radio occultation mission, including the launch system for small payloads, the LEO microsat, the GPS constellation, the GPS flight receiver payload, the mission operations ground control and data receiving system, the ground-based GPS global tracking network for precision orbit determination, and the central data processing and archive system. Chapter 5 addresses the various technology readiness questions that invariably arise. Chapter 6 discusses the overall costs of a demonstration mission such as GPS/MET (meteorological) proposed by the University Navstar Consortium (UNAVCO). Chapter 7 describes a geometrical optics approach to coplanar atmospheric occultation. Chapter 8 addresses major questions regarding accuracy of the occultation techniques. Chapter 9 describes some simulations that have been performed to evaluate the sensitivity of the recovered profiles of atmospheric parameters to different error sources, such as departure from spherical symmetry, water vapor, etc. Chapter 10 discusses horizontal and vertical resolution associated with limb sounders in general. Chapter 11 treats selected Fresnel diffraction techniques that can be used in radio occultation measurements to sharpen resolution. Chapter 12 provides brief discussions on selected special topics, such as strategies for handling interference and multipath processes that may arise for rays traveling in the lower troposphere.

313 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the accuracy of the German Challenging Minisatellite Payload (CHAMP) and the Argentine Satelite de Aplicaciones Cientificas-C (SAC-C) Earth science missions for radio occultation sounding of the ionosphere and neutral atmosphere.
Abstract: [1] The German Challenging Minisatellite Payload (CHAMP) and Argentine Satelite de Aplicaciones Cientificas-C (SAC-C) Earth science missions, launched in 2000, carry a new generation of Global Positioning System (GPS) receivers for radio occultation sounding of the ionosphere and neutral atmosphere. Though the occultation concept for obtaining profiles of atmospheric temperature, pressure, and moisture was proven in 1995 with GPS/MET, concurrent measurements from CHAMP and SAC-C present the first opportunity for a preliminary evaluation of three central claims: (1) GPS soundings are effectively free of instrumental bias and drift; (2) individual temperature profiles are accurate to <0.5 K between ∼5 and 20 km; and (3) averaged profiles for climate studies can be accurate to <0.1 K. These properties imply that a weak climate trend can be monitored and detected in less than a decade and studied by different instruments at different times with no external calibration. While this detection cannot by itself tell us the source of the climate change, whether natural and anthropogenic, this detection is a prerequisite to answer the more difficult problem of understanding the cause of change. In this paper, these three claims are evaluated by comparing nearby CHAMP and SAC-C profiles. Of nearly 130,000 profiles examined, 212 pairs occurring within 30 min and 200 km of one another were found. Profile pairs agree to <0.86 K (68% confidence interval) and to within 0.1 K in the mean between 5 and 15 km altitude, after removing the expected variability of the atmosphere. If the errors in CHAMP and SAC-C are assumed to be uncorrelated, this implies that individual profiles are precise to <0.6 K between 5 and 15 km. Individual comparisons show closest agreement near the tropopause and display finer resolution than and substantially different temperatures from numerical weather model analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). Comparisons between CHAMP and SAC-C largely indicate precision; however, several features observed in common, especially near the tropopause, tend also to indicate accuracy. Limitations of previous experiments (e.g., GPS/MET) in probing the lower troposphere have significantly improved with CHAMP and SAC-C, with the majority of profiles (60%) descending to the lowest 0.5 km. This is expected to increase to 90–95% with future system improvements. However, the N-bias problem encountered in GPS/MET is also present in CHAMP and SAC-C, and it is expected to be much reduced once open loop tracking is implemented. Examples are selected to illustrate lower tropospheric sensing, including detection of the planetary boundary layer height. For the first time, such performance is achieved with GPS Antispoofing encryption on. Daily occultations currently number ∼350–400; this is expected to reach over 1000 in the near future, rivaling the number of semidaily radiosonde launches. With several new missions in planning, this may increase tenfold in the next 3–8 years, making GPS sounding a potentially significant input to numerical weather prediction and climate research.

301 citations

Journal ArticleDOI
TL;DR: In this article, the structural uncertainty of atmospheric trends estimated from the radio occultation (RO) record is quantified from current processing schemes of six international RO processing centers, DMI Copenhagen, EUM Darmstadt, GFZ Potsdam, JPL Pasadena, UCAR Boulder, and WEGC Graz.
Abstract: . Global Positioning System (GPS) radio occultation (RO) has provided continuous observations of the Earth's atmosphere since 2001 with global coverage, all-weather capability, and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS). Precise time measurements enable long-term stability but careful processing is needed. Here we provide climate-oriented atmospheric scientists with multicenter-based results on the long-term stability of RO climatological fields for trend studies. We quantify the structural uncertainty of atmospheric trends estimated from the RO record, which arises from current processing schemes of six international RO processing centers, DMI Copenhagen, EUM Darmstadt, GFZ Potsdam, JPL Pasadena, UCAR Boulder, and WEGC Graz. Monthly-mean zonal-mean fields of bending angle, refractivity, dry pressure, dry geopotential height, and dry temperature from the CHAMP mission are compared for September 2001 to September 2008. We find that structural uncertainty is lowest in the tropics and mid-latitudes (50° S to 50° N) from 8 km to 25 km for all inspected RO variables. In this region, the structural uncertainty in trends over 7 yr is

99 citations

Journal ArticleDOI
TL;DR: In this paper, the structural uncertainties of retrieved profiles that result from different processing methods are quantified and differences and standard deviations of the individual centers relative to the inter-center mean are used to quantify the structural uncertainty.
Abstract: [1] To examine the claim that Global Positioning System (GPS) radio occultation (RO) data are useful as a benchmark data set for climate monitoring, the structural uncertainties of retrieved profiles that result from different processing methods are quantified. Profile-to-profile comparisons of CHAMP (CHAllenging Minisatellite Payload) data from January 2002 to August 2008 retrieved by six RO processing centers are presented. Differences and standard deviations of the individual centers relative to the inter-center mean are used to quantify the structural uncertainty. Uncertainties accumulate in derived variables due to propagation through the RO retrieval chain. This is reflected in the inter-center differences, which are small for bending angle and refractivity increasing to dry temperature, dry pressure, and dry geopotential height. The mean differences of the time series in the 8 km to 30 km layer range from −0.08% to 0.12% for bending angle, −0.03% to 0.02% for refractivity, −0.27 K to 0.15 K for dry temperature, −0.04% to 0.04% for dry pressure, and −7.6 m to 6.8 m for dry geopotential height. The corresponding standard deviations are within 0.02%, 0.01%, 0.06 K, 0.02%, and 2.0 m, respectively. The mean trend differences from 8 km to 30 km for bending angle, refractivity, dry temperature, dry pressure, and dry geopotential height are within ±0.02%/5 yrs, ±0.02%/5 yrs, ±0.06 K/5 yrs, ±0.02%/5 yrs, and ±2.3 m/5 yrs, respectively. Although the RO-derived variables are not readily traceable to the international system of units, the high precision nature of the raw RO observables is preserved in the inversion chain.

94 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors presented a new approach to remote sensing of water vapor based on the global positioning system (GPS) for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor.
Abstract: We present a new approach to remote sensing of water vapor based on the global positioning system (GPS). Geodesists and geophysicists have devised methods for estimating the extent to which signals propagating from GPS satellites to ground-based GPS receivers are delayed by atmospheric water vapor. This delay is parameterized in terms of a time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the GPS data. Given surface temperature and pressure readings at the GPS receiver, the retrieved ZWD can be transformed with very little additional uncertainty into an estimate of the integrated water vapor (IWV) overlying that receiver. Networks of continuously operating GPS receivers are being constructed by geodesists, geophysicists, government and military agencies, and others in order to implement a wide range of positioning capabilities. These emerging GPS networks offer the possibility of observing the horizontal distribution of IWV or, equivalently, precipitable water with unprecedented coverage and a temporal resolution of the order of 10 min. These measurements could be utilized in operational weather forecasting and in fundamental research into atmospheric storm systems, the hydrologic cycle, atmospheric chemistry, and global climate change. Specially designed, dense GPS networks could be used to sense the vertical distribution of water vapor in their immediate vicinity. Data from ground-based GPS networks could be analyzed in concert with observations of GPS satellite occultations by GPS receivers in low Earth orbit to characterize the atmosphere at planetary scale.

2,011 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first systematic, extensive error analysis of the spacecraft radio occultation technique using a combination of analytical and simulation methods to establish a baseline accuracy for retrieved profiles of refractivity, geopotential, and temperature.
Abstract: The implementation of the Global Positioning System (GPS) network of satellites and the development of small, high-performance instrumentation to receive GPS signals have created an opportunity for active remote sounding of the Earth's atmosphere by radio occultation at comparatively low cost. A prototype demonstration of this capability has now been provided by the GPS/MET investigation. Despite using relatively immature technology, GPS/MET has been extremely successful [Ware et al., 1996; Kursinski et al., 1996], although there is still room for improvement. The aim of this paper is to develop a theoretical estimate of the spatial coverage, resolution, and accuracy that can be expected for atmospheric profiles derived from GPS occultations. We consider observational geometry, attenuation, and diffraction in defining the vertical range of the observations and their resolution. We present the first systematic, extensive error analysis of the spacecraft radio occultation technique using a combination of analytical and simulation methods to establish a baseline accuracy for retrieved profiles of refractivity, geopotential, and temperature. Typically, the vertical resolution of the observations ranges from 0.5 km in the lower troposphere to 1.4 km in the middle atmosphere. Results indicate that useful profiles of refractivity can be derived from ∼60 km altitude to the surface with the exception of regions less than 250 m in vertical extent associated with high vertical humidity gradients. Above the 250 K altitude level in the troposphere, where the effects of water are negligible, sub-Kelvin temperature accuracy is predicted up to ∼40 km depending on the phase of the solar cycle. Geopotential heights of constant pressure levels are expected to be accurate to ∼10 m or better between 10 and 20 km altitudes. Below the 250 K level, the ambiguity between water and dry atmosphere refractivity becomes significant, and temperature accuracy is degraded. Deep in the warm troposphere the contribution of water to refractivity becomes sufficiently large for the accurate retrieval of water vapor given independent temperatures from weather analyses [Kursinski et al., 1995]. The radio occultation technique possesses a unique combination of global coverage, high precision, high vertical resolution, insensitivity to atmospheric particulates, and long-term stability. We show here how these properties are well suited for several applications including numerical weather prediction and long-term monitoring of the Earth's climate.

1,249 citations

Journal ArticleDOI
TL;DR: The radio occultation (RO) technique, which makes use of radio signals transmitted by the global positioning system (GPS) satellites, has emerged as a powerful and relatively inexpensive approach for sounding the global atmosphere with high precision, accuracy, and vertical resolution in all weather and over both land and ocean as mentioned in this paper.
Abstract: The radio occultation (RO) technique, which makes use of radio signals transmitted by the global positioning system (GPS) satellites, has emerged as a powerful and relatively inexpensive approach for sounding the global atmosphere with high precision, accuracy, and vertical resolution in all weather and over both land and ocean. On 15 April 2006, the joint Taiwan-U.S. Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3, hereafter COSMIC) mission, a constellation of six microsatellites, was launched into a 512-km orbit. After launch the satellites were gradually deployed to their final orbits at 800 km, a process that took about 17 months. During the early weeks of the deployment, the satellites were spaced closely, offering a unique opportunity to verify the high precision of RO measurements. As of September 2007, COSMIC is providing about 2000 RO soundings per day to support the research and operational communities. COSMIC RO dat...

816 citations

Journal ArticleDOI
TL;DR: An advanced dynamic statistical optimization algorithm is introduced, which uses bending angles from multiple days of European Centre for Medium-range Weather Forecasts (ECMWF) short-range forecast and analysis fields, together with averaged-observed bending angles, to obtain background profiles and associated error covariance matrices with geographically varying background uncertainty estimates on a daily updated basis.
Abstract: [1] Global Navigation Satellite System (GNSS)-based radio occultation (RO) is a satellite remote sensing technique providing accurate profiles of the Earth’s atmosphere for weather and climate applications. Above about 30km altitude, however, statistical optimization is a critical process for initializing the RO bending angles in order to optimize the climate monitoring utility of the retrieved atmospheric profiles. Here we introduce an advanced dynamic statistical optimization algorithm, which uses bending angles from multiple days of European Centre for Medium-range Weather Forecasts (ECMWF) short-range forecast and analysis fields, together with averaged-observed bending angles, to obtain background profiles and associated error covariance matrices with geographically varying background uncertainty estimates on a daily updated basis. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.4 (OPSv5.4) algorithm, using several days of simulated MetOp and observed CHAMP and COSMIC data, for January and July conditions. We find the following for the new method’s performance compared to OPSv5.4: 1.) it significantly reduces random errors (standard deviations), down to about half their size, and leaves less or about equal residual systematic errors (biases) in the optimized bending angles; 2.) the dynamic (daily) estimate of the background error correlation matrix alone already improves the optimized bending angles; 3.) the subsequently retrievedrefractivityprofilesandatmospheric(temperature)profilesbenefit by improvederror characteristics,especiallyabove about 30km. Based on theseencouraging results, we work to employ similar dynamic error covariance estimation also for the observed bending angles and to apply the method to full months and subsequently to entire climate data records.

705 citations

Journal ArticleDOI
TL;DR: The German small satellite CHAMP is on the final track for launch on July 15, 2000 into a circular, near-polar and 460 km altitude orbit as discussed by the authors, with synergetic use for precise orbit determination, global gravity and magnetic field recovery, and GPS atmosphere and ionosphere profiling.

695 citations