scispace - formally typeset
Search or ask a question
Author

E.R. Thoen

Bio: E.R. Thoen is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Waveguide (optics) & Photonic crystal. The author has an hindex of 9, co-authored 14 publications receiving 1889 citations.

Papers
More filters
Journal ArticleDOI
13 Nov 1997-Nature
TL;DR: In this paper, the authors measured microcavity resonances in two-and three-dimensional photonic-bandgap (PBG) structures integrated directly into a sub-micrometre-scale silicon waveguide.
Abstract: Confinement of light to small volumes has important implications for optical emission properties: it changes the probability of spontaneous emission from atoms, allowing both enhancement and inhibition. In photonic-bandgap (PBG) materials1,2,3,4 (also known as photonic crystals), light can be confined within a volume of the order of (λ/2n)3, where λ is the emission wavelength and n the refractive index of the material, by scattering from a periodic array of scattering centres. Until recently5,6, the properties of two- and three-dimensional PBG structures have been measured only at microwave frequencies. Because the optical bandgap scales with the period of the scattering centres, feature sizes of around 100 nm are needed for manipulation of light at the infrared wavelength (1.54 µm) used for optical communications. Fabricating features this small requires the use of electron-beam or X-ray lithography. Here we report measurements of microcavity resonances in PBG structures integrated directly into a sub-micrometre-scale silicon waveguide. The microcavity has a resonance at a wavelength of 1.56 µm, a quality factor of 265 and a modal volume of 0.055 µm3. This level of integration might lead to new photonic chip architectures and devices, such as zero-threshold microlasers, filters and signal routers.

979 citations

Journal ArticleDOI
TL;DR: In this paper, a compact optical channel dropping filter incorporating side-coupled ring resonators as small as 3 /spl mu/m in radius is realized in silicon technology.
Abstract: Compact optical channel dropping filters incorporating side-coupled ring resonators as small as 3 /spl mu/m in radius are realized in silicon technology. Quality factors up to 250, and a free-spectral range (FSR) as large as 24 nm are measured. Such structures can be used as fundamental building blocks in more sophisticated optical signal processing devices.

678 citations

Journal ArticleDOI
TL;DR: In this article, the photonic bandgap (PBG) waveguide microcavities with tightly confined resonant optical modes have been designed, fabricated using high-dielectric-contrast GaAs/Al/sub x/O/sub y/III-V compound semiconductor structures, and characterized optically.
Abstract: Photonic bandgap (PBG) waveguide microcavities with tightly confined resonant optical modes have been designed, fabricated using high-dielectric-contrast GaAs/Al/sub x/O/sub y/ III-V compound semiconductor structures, and characterized optically. The photonic crystal lattices are defined by one-dimensional (1-D) arrays of holes in waveguides, and a controlled defect in the spacing between two holes of an array defines a microcavity. Waveguide microcavity resonances have been studied in both monorail and suspended air-bridge geometries. Resonance states with cavity Q's as high as 360 were measured at wavelengths near 1.55 /spl mu/m, with modal volumes as small as 0.026 /spl mu/m, which corresponds to only two times (/spl lambda//2n)/sup 3/.

71 citations

Journal ArticleDOI
TL;DR: In this paper, a semiconductor saturable absorber mirror was used in a laser based on an Er-Yb codoped planar waveguide amplifier for continuous-wave mode-locking with 9.8-ps pulses at repetition rates up to 100 MHz.
Abstract: Picosecond pulses are produced using a semiconductor saturable absorber mirror in a laser based on an Er-Yb codoped planar waveguide amplifier. Continuous-wave mode-locking (CWML) with 9.8-ps pulses is obtained at repetition rates up to 100 MHz. With intracavity spectral filtering, saturable pulsewidths of 1 ps are achieved, and tunable picosecond pulses are obtained from 1534 to 1553 nm. Absorber characterization suggests that two-photon absorption within the saturable absorber mirror influences the CWML stability.

55 citations

Journal ArticleDOI
TL;DR: In this article, pump-probe studies at 1.5 μm of PbTe quantum dots in a glass matrix have revealed oscillations due to a spheroidal acoustic mode.
Abstract: Femtosecond pump-probe studies at 1.5 μm of PbTe quantum dots in a glass matrix have revealed oscillations due to a spheroidal acoustic mode. The wavelength dependence of the observed frequencies indicates size selectivity. The frequency and damping of the mode as a function of wavelength agree with the predictions of an acoustic continuum model that suggests that the dominant damping mechanism is radiative loss from the dots to the surrounding glass.

47 citations


Cited by
More filters
Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
19 May 2005-Nature
TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Abstract: Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.

2,336 citations

Journal ArticleDOI
02 Mar 2000-Nature
TL;DR: This work describes a technique—three-dimensional holographic lithography—that is well suited to the production of three-dimensional structures with sub-micrometre periodicity, and has made microperiodic polymeric structures, and used these as templates to create complementary structures with higher refractive-index contrast.
Abstract: The term 'photonics' describes a technology whereby data transmission and processing occurs largely or entirely by means of photons. Photonic crystals are microstructured materials in which the dielectric constant is periodically modulated on a length scale comparable to the desired wavelength of operation. Multiple interference between waves scattered from each unit cell of the structure may open a 'photonic bandgap'--a range of frequencies, analogous to the electronic bandgap of a semiconductor, within which no propagating electromagnetic modes exist. Numerous device principles that exploit this property have been identified. Considerable progress has now been made in constructing two-dimensional structures using conventional lithography, but the fabrication of three-dimensional photonic crystal structures for the visible spectrum remains a considerable challenge. Here we describe a technique--three-dimensional holographic lithography--that is well suited to the production of three-dimensional structures with sub-micrometre periodicity. With this technique we have made microperiodic polymeric structures, and we have used these as templates to create complementary structures with higher refractive-index contrast.

1,737 citations

Journal ArticleDOI
TL;DR: It is shown that by use of a novel waveguide geometry the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 microm(-2), approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides.
Abstract: We present a novel waveguide geometry for enhancing and confining light in a nanometer-wide low-index material. Light enhancement and confinement is caused by large discontinuity of the electric field at highindex-contrast interfaces. We show that by use of such a structure the field can be confined in a 50-nm-wide low-index region with a normalized intensity of 20 mm 22 . This intensity is approximately 20 times higher than what can be achieved in SiO2 with conventional rectangular waveguides. © 2004 Optical Society of America OCIS codes: 030.4070, 130.0130, 130.2790, 230.7370, 230.7380, 230.7390, 230.7400. Recent results in integrated optics have shown the ability to guide, bend, split, and f ilter light on chips by use of optical devices based on high-index-contrast waveguides. 1–5 In all these devices the guiding mechanism is based on total internal ref lection (TIR) in a highindex material (core) surrounded by a low-indexmaterial (cladding); the TIR mechanism can strongly confine light in the high-index material. In recent years a number of structures have been proposed to guide or enhance light in low-index materials, 6–1 1 relying on external ref lections provided by interference effects. Unlike TIR, the external ref lection cannot be perfectly unity; therefore the modes in these structures are inherently leaky modes. In addition, since interference is involved, these structures are strongly wavelength dependent. Here we show that the optical field can be enhanced and conf ined in the low-index material even when light is guided by TIR. For a high-index-contrast interface, Maxwell’s equations state that, to satisfy the continuity of the normal component of electric f lux density D, the corresponding electric field (E-field) must undergo a large discontinuity with much higher amplitude in the low-index side. We show that this discontinuity can be used to strongly enhance and confine light in a nanometer-wide region of low-index material. The proposed structure presents an eigenmode, and it is compatible with highly integrated photonics technology. The principle of operation of the novel structure can be illustrated by analysis of the slab-based structure shown in Fig. 1(a), where a low-index slot is embedded between two high-index slabs (shaded regions). The novel structure is hereafter referred to as a slot waveguide. The slot waveguide eigenmode can be seen as being formed by the interaction between the fundamental eigenmodes of the individual slab waveguides. Rigorously, the analytical solution for the transverse E-field profile Ex of the fundamental TM eigenmode of the slab-based slot waveguide is

1,716 citations

Journal ArticleDOI
TL;DR: In this paper, topological edge states of light are observed in a two-dimensional array of coupled optical ring resonators, which induce a virtual magnetic field for photons using silicon-on-insulator technology.
Abstract: Topological edge states of light are observed in a two-dimensional array of coupled optical ring resonators, which induce a virtual magnetic field for photons using silicon-on-insulator technology. The edge states are experimentally demonstrated to be robust against intrinsic and introduced disorder, which is a hallmark of topological order.

1,462 citations