scispace - formally typeset
Search or ask a question
Author

E. van Lenthe

Bio: E. van Lenthe is an academic researcher from VU University Amsterdam. The author has contributed to research in topics: Relativistic quantum chemistry & Hamiltonian (quantum mechanics). The author has an hindex of 19, co-authored 22 publications receiving 11372 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, potential-dependent transformations are used to transform the four-component Dirac Hamiltonian to effective two-component regular Hamiltonians, which already contain the most important relativistic effects, including spin-orbit coupling.
Abstract: In this paper, potential‐dependent transformations are used to transform the four‐component Dirac Hamiltonian to effective two‐component regular Hamiltonians. To zeroth order, the expansions give second order differential equations (just like the Schrodinger equation), which already contain the most important relativistic effects, including spin–orbit coupling. One of the zero order Hamiltonians is identical to the one obtained earlier by Chang, Pelissier, and Durand [Phys. Scr. 34, 394 (1986)]. Self‐consistent all‐electron and frozen‐core calculations are performed as well as first order perturbation calculations for the case of the uranium atom using these Hamiltonians. They give very accurate results, especially for the one‐electron energies and densities of the valence orbitals.

3,585 citations

Journal ArticleDOI
TL;DR: In this paper, a simple scaling of the ZORA one-electron Hamiltonian is shown to yield energies for the hydrogenlike atom that are exactly equal to the Dirac energies.
Abstract: In this paper we will discuss relativistic total energies using the zeroth order regular approximation (ZORA). A simple scaling of the ZORA one‐electron Hamiltonian is shown to yield energies for the hydrogenlike atom that are exactly equal to the Dirac energies. The regular approximation is not gauge invariant in each order, but the scaled ZORA energy can be shown to be exactly gauge invariant for hydrogenic ions. It is practically gauge invariant for many‐electron systems and proves superior to the (unscaled) first order regular approximation for atomic ionization energies. The regular approximation, if scaled, can therefore be applied already in zeroth order to molecular bond energies. Scalar relativistic density functional all‐electron and frozen core calculations on diatomics, consisting of copper, silver, and gold and their hydrides are presented. We used exchange‐correlation energy functionals commonly used in nonrelativistic calculations; both in the local‐density approximation (LDA) and including...

2,645 citations

Journal ArticleDOI
TL;DR: Seven different types of Slater type basis sets for the elements H (Z = 1) up to E118, ranging from a double zeta valence quality up to a quadruple zetavalence quality, are tested in their performance in neutral atomic and diatomic oxide calculations.
Abstract: Seven different types of Slater type basis sets for the elements H (Z = 1) up to E118 (Z = 118), ranging from a double zeta valence quality up to a quadruple zeta valence quality, are tested in their performance in neutral atomic and diatomic oxide calculations. The exponents of the Slater type functions are optimized for the use in (scalar relativistic) zeroth-order regular approximated (ZORA) equations. Atomic tests reveal that, on average, the absolute basis set error of 0.03 kcal/mol in the density functional calculation of the valence spinor energies of the neutral atoms with the largest all electron basis set of quadruple zeta quality is lower than the average absolute difference of 0.16 kcal/mol in these valence spinor energies if one compares the results of ZORA equation with those of the fully relativistic Dirac equation. This average absolute basis set error increases to about 1 kcal/mol for the all electron basis sets of triple zeta valence quality, and to approximately 4 kcal/mol for the all electron basis sets of double zeta quality. The molecular tests reveal that, on average, the calculated atomization energies of 118 neutral diatomic oxides MO, where the nuclear charge Z of M ranges from Z = 1-118, with the all electron basis sets of triple zeta quality with two polarization functions added are within 1-2 kcal/mol of the benchmark results with the much larger all electron basis sets, which are of quadruple zeta valence quality with four polarization functions added. The accuracy is reduced to about 4-5 kcal/mol if only one polarization function is used in the triple zeta basis sets, and further reduced to approximately 20 kcal/mol if the all electron basis sets of double zeta quality are used. The inclusion of g-type STOs to the large benchmark basis sets had an effect of less than 1 kcal/mol in the calculation of the atomization energies of the group 2 and group 14 diatomic oxides. The basis sets that are optimized for calculations using the frozen core approximation (frozen core basis sets) have a restricted basis set in the core region compared to the all electron basis sets. On average, the use of these frozen core basis sets give atomic basis set errors that are approximately twice as large as the corresponding all electron basis set errors and molecular atomization energies that are close to the corresponding all electron results. Only if spin-orbit coupling is included in the frozen core calculations larger errors are found, especially for the heavier elements, due to the additional approximation that is made that the basis functions are orthogonalized on scalar relativistic core orbitals.

2,112 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of spin-orbit coupling on properties of closed shell molecules was calculated using the zero-order regular approximation to the Dirac equation. But the results were obtained using density functionals including density gradient corrections, and close agreement with experiment is obtained for the calculated molecular properties of a number of heavy element diatomic molecules.
Abstract: In this paper we will calculate the effect of spin–orbit coupling on properties of closed shell molecules, using the zero‐order regular approximation to the Dirac equation. Results are obtained using density functionals including density gradient corrections. Close agreement with experiment is obtained for the calculated molecular properties of a number of heavy element diatomic molecules.

1,400 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown how the regularized two-component relativistic Hamiltonians of Heully et al. and Chang, Pelissier, and Durand can be viewed as arising from a perturbation expansion that unlike the Pauli expansion remains regular even for singular attractive Coulomb potentials.
Abstract: It is shown how the regularized two-component relativistic Hamiltonians of Heully et al. and Chang, Pelissier, and Durand can be viewed as arising from a perturbation expansion that unlike the Pauli expansion remains regular even for singular attractive Coulomb potentials. The performance of these approximate Hamiltonians is tested in the framework of the local density approximation and the relation of their spectrum to that of the Dirac Hamiltonian is discussed. The circumstances under which the current approximations are superior to the Pauli Hamiltonian are analyzed. Finally, it shown how the Hamiltonians could be used within the context of conventional Hartree-Fock theory. © 1996 John Wiley & Sons, Inc.

983 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Abstract: We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

8,490 citations

Journal ArticleDOI
TL;DR: An overview of NWChem is provided focusing primarily on the core theoretical modules provided by the code and their parallel performance, as well as Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures.

4,666 citations

Book
01 Sep 2001
TL;DR: A Chemist's Guide to Density Functional Theory should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems.
Abstract: "Chemists familiar with conventional quantum mechanics will applaud and benefit greatly from this particularly instructive, thorough and clearly written exposition of density functional theory: its basis, concepts, terms, implementation, and performance in diverse applications. Users of DFT for structure, energy, and molecular property computations, as well as reaction mechanism studies, are guided to the optimum choices of the most effective methods. Well done!" Paul von RaguE Schleyer "A conspicuous hole in the computational chemist's library is nicely filled by this book, which provides a wide-ranging and pragmatic view of the subject.[...It] should justifiably become the favorite text on the subject for practioneers who aim to use DFT to solve chemical problems." J. F. Stanton, J. Am. Chem. Soc. "The authors' aim is to guide the chemist through basic theoretical and related technical aspects of DFT at an easy-to-understand theoretical level. They succeed admirably." P. C. H. Mitchell, Appl. Organomet. Chem. "The authors have done an excellent service to the chemical community. [...] A Chemist's Guide to Density Functional Theory is exactly what the title suggests. It should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems." M. Kaupp, Angew. Chem.

3,550 citations

Journal ArticleDOI
TL;DR: In this paper, a simple scaling of the ZORA one-electron Hamiltonian is shown to yield energies for the hydrogenlike atom that are exactly equal to the Dirac energies.
Abstract: In this paper we will discuss relativistic total energies using the zeroth order regular approximation (ZORA). A simple scaling of the ZORA one‐electron Hamiltonian is shown to yield energies for the hydrogenlike atom that are exactly equal to the Dirac energies. The regular approximation is not gauge invariant in each order, but the scaled ZORA energy can be shown to be exactly gauge invariant for hydrogenic ions. It is practically gauge invariant for many‐electron systems and proves superior to the (unscaled) first order regular approximation for atomic ionization energies. The regular approximation, if scaled, can therefore be applied already in zeroth order to molecular bond energies. Scalar relativistic density functional all‐electron and frozen core calculations on diatomics, consisting of copper, silver, and gold and their hydrides are presented. We used exchange‐correlation energy functionals commonly used in nonrelativistic calculations; both in the local‐density approximation (LDA) and including...

2,645 citations

Journal ArticleDOI
TL;DR: The construction of transferable, hierarchical basis sets are demonstrated, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set, since all basis functions are strictly localized.

2,178 citations