scispace - formally typeset
Search or ask a question
Author

E. van Ranst

Bio: E. van Ranst is an academic researcher. The author has contributed to research in topics: Soil chemistry & Consumables. The author has an hindex of 1, co-authored 1 publications receiving 249 citations.

Papers

Cited by
More filters
Journal ArticleDOI
TL;DR: The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose, application time (presow), plant species and sediment (calcareous clayey soil) under study.
Abstract: Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg(-1) soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.

160 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a fluorescence excitation-emission matrix coupled with parallel factor analysis is a useful tool to monitor changes in the soil quality after application of biochar, which is greatly relevant to the soil biota.

148 citations

Book ChapterDOI
TL;DR: This study provides an analytical framework for the assessment of soil fertility decline and shows pitfalls and how they should be handled and Boundary conditions are presented that could be used in future studies on soil fertility management and crop productivity in the tropics.
Abstract: Soil fertility decline is perceived to be widespread in the upland soils of the tropics, particularly in sub‐Saharan Africa. Most studies have used nutrient balances to assess the degree and extent of nutrient depletion; these have created awareness but suffer methodological problems as several of the nutrient flows and stocks are not measured. This chapter focuses on the assessment of soil fertility decline using soil chemical data (pH, organic C, total N, available P, cation exchange capacity (CEC), and exchangeable cations) that are routinely collected in soil surveys or for the assessment of fertilizer recommendations. Soil fertility decline can be assessed using a set of properties from different periods at the same site or from different land‐use systems with the same soils. The former is easier to interpret; the latter can be rapidly collected but differences may be due to inherent differences and not have resulted from soil management. This study provides an analytical framework for the assessment of soil fertility decline and shows pitfalls and how they should be handled. Boundary conditions are presented that could be used in future studies on soil fertility management and crop productivity in the tropics.

131 citations

Book ChapterDOI
01 Jan 2015
TL;DR: In this paper, the authors evaluated the phosphorus use efficiency (PUE) based on the plant reaction and changes in soil P bioavailability status in time by land application of recovered bio-based fertilizers, including struvite, FePO4-sludge, digestate, and animal manure, compared to synthetic triple super phosphate (TSP).
Abstract: The aim of this study was to evaluate the phosphorus use efficiency (PUE) based on the plant reaction and changes in soil P bioavailability status in time by land application of recovered bio-based fertilizers, including struvite, FePO4-sludge, digestate, and animal manure, compared to synthetic triple super phosphate (TSP). First, product characteristics and P fractionations were assessed. Then, a greenhouse experiment was set up to evaluate plant growth and P uptake, as well as changes in P availability on sandy soils with both high and low P status. P soil fractions were determined in extracts with water (Pw), ammonium lactate (PAl), and CaCl2 (P-PAE) and in soil solution sampled with Rhizon samplers (Prhizon). Struvite demonstrated potential as a slow release, mixed nutrient fertilizer, providing a high P availability in the beginning of the growing season, as well as a stock for delayed, slow release. The addition of FePO4-sludge was not interesting in terms of P release, but resulted in the highest PUE regarding biomass yields. The conversion of animal manure by anaerobic (co)digestion and subsequent soil application of digestate improved the PUE. Finally, the additional use of Rhizon samplers is proposed for better understanding and categorization of different inorganic and organic P fertilizers in environmental legislation.

126 citations

Journal ArticleDOI
Céline Vaneeckhaute1, Erik Meers1, Evi Michels1, Jeroen Buysse1, Filip Tack1 
TL;DR: In this paper, the physicochemical properties of digestates and derivatives are characterized in order to identify the fertilizer value and potential bottlenecks for agricultural re-use of these products, in line with European legislative constraints.
Abstract: In the transition from a fossil to a bio-based economy, it has become an important challenge to maximally recuperate valuable nutrients coming from waste streams. Nutrient resources are rapidly depleting, significant amounts of fossil energy are used for the production of chemical fertilizers, whereas costs for energy and fertilizers are increasing. In the meantime, biogas production through anaerobic digestion produces nutrient-rich digestates. In high-nutrient regions, these products cannot or only sparingly be returned to agricultural land in its crude unprocessed form. The consequent processing of this digestate requires a variety of technologies producing lots of different derivatives, which could potentially be re-used as green fertilizers in agriculture. As such, a sustainable alternative for fossil-based mineral fertilizers could be provided. This study aims to characterize the physico-chemical properties of digestates and derivatives, in order to identify the fertilizer value and potential bottlenecks for agricultural re-use of these products, in line with European legislative constraints. In addition, the economic and ecological benefits of substituting conventional fertilizers by bio-based alternatives are quantified and evaluated. Waste water from acidic air scrubbers for ammonia removal shows potential for application as N-S fertilizer. Analogously, concentrates resulting from membrane filtrated liquid fraction of digestate show promise as N-K fertilizer. Substituting conventional fertilizers by digestate derivatives in different cultivation scenarios can result in significant economic and ecological benefits for the agriculturist. Starting from theoretical scenarios outlined in the current study, field test validation will be required to confirm the potential substitution of fossil-based mineral fertilizers by bio-based alternatives.

122 citations