scispace - formally typeset
Search or ask a question
Author

E. Weibel

Bio: E. Weibel is an academic researcher from IBM. The author has contributed to research in topics: Scanning tunneling microscope & Work function. The author has an hindex of 2, co-authored 3 publications receiving 5642 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, surface microscopy using vacuum tunneling has been demonstrated for the first time, and topographic pictures of surfaces on an atomic scale have been obtained for CaIrSn 4 and Au.
Abstract: Surface microscopy using vacuum tunneling is demonstrated for the first time. Topographic pictures of surfaces on an atomic scale have been obtained. Examples of resolved monoatomic steps and surface reconstructions are shown for (110) surfaces of CaIrSn 4 and Au.

4,290 citations

Journal ArticleDOI
TL;DR: In this paper, a modified adatom model with 12 adatoms per unit cell and an inhomogeneously relaxed underlying top layer was used for Si(111) reconstruction.
Abstract: The 7× 7 reconstruction on Si(111) was observed in real space by scanning tunneling microscopy. The experiment strongly favors a modified adatom model with 12 adatoms per unit cell and an inhomogeneously relaxed underlying top layer.

1,550 citations

Book ChapterDOI
01 Jan 1983
TL;DR: In this paper, a modified adatom model with 12 adatoms per unit cell and an inhomogeneously relaxed underlying top layer was used for Si(111) reconstruction.
Abstract: The 7× 7 reconstruction on Si(111) was observed in real space by scanning tunneling microscopy. The experiment strongly favors a modified adatom model with 12 adatoms per unit cell and an inhomogeneously relaxed underlying top layer.

Cited by
More filters
Journal ArticleDOI
TL;DR: The atomic force microscope as mentioned in this paper is a combination of the principles of the scanning tunneling microscope and the stylus profilometer, which was proposed as a method to measure forces as small as 10-18 N. As one application for this concept, they introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale.
Abstract: The scanning tunneling microscope is proposed as a method to measure forces as small as 10-18 N. As one application for this concept, we introduce a new type of microscope capable of investigating surfaces of insulators on an atomic scale. The atomic force microscope is a combination of the principles of the scanning tunneling microscope and the stylus profilometer. It incorporates a probe that does not damage the surface. Our preliminary results in air demonstrate a lateral resolution of 30 A and a vertical resolution less than 1 A.

12,344 citations

Journal ArticleDOI
TL;DR: The most relevant features of WSXM, a freeware scanning probe microscopy software based on MS-Windows, are described and some relevant procedures of the software are carried out.
Abstract: In this work we briefly describe the most relevant features of WSXM, a freeware scanning probe microscopy software based on MS-Windows. The article is structured in three different sections: The introduction is a perspective on the importance of software on scanning probe microscopy. The second section is devoted to describe the general structure of the application; in this section the capabilities of WSXM to read third party files are stressed. Finally, a detailed discussion of some relevant procedures of the software is carried out.

6,996 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

Journal ArticleDOI
Jerry Tersoff1, D. R. Hamann1
TL;DR: In this paper, a metal tip is scanned along the surface while ad justing its height to maintain constant vacuum tunneling current, and a contour map of the surface is generated.
Abstract: The recent development of the “scanning tunneling microscope” (STM) by Binnig et al. [8.1–5] has made possible the direct real-space imaging of surface topography. In this technique, a metal tip is scanned along the surface while ad justing its height to maintain constant vacuum tunneling current. The result is essentially a contour map of the surface. This contribution reviews the the ory [8.6–8] of STM, with illustrative examples. Because the microscopic structure of the tip is unknown, the tip wave functions are modeled as s-wave functions in the present approach [8.6, 7]. This approximation works best for small effective tip size. The tunneling current is found to be proportional to the surface local density of states (at the Fermi level), evaluated at the position of the tip. The effective resolution is roughly [2A(R+d)]1/2, where R is the effective tip radius and d is the gap distance. When applied to the 2x1 and 3x1 reconstructions of the Au(l10) surface, the theory gives excellent agreement with experiment [8.4] if a 9 A tip radius is assumed. For dealing with more complex or aperiodic surfaces, a crude but convenient calculational technique based on atom charge superposition is introduced; it reproduces the Au(l10) results reasonably well. This method is used to test the structure-sensitivity of STM. The Au(l10) image is found to be rather insensitive to the position of atoms beyond the first atomic layer.

3,192 citations

Journal ArticleDOI
D. M. Eigler1, E. K. Schweizer1
01 Apr 1990-Nature
TL;DR: In this paper, Binnig and Rohrer used the scanning tunnelling microscope (STM) to position individual xenon atoms on a single-crystal nickel surface with atomic pre-cision.
Abstract: SINCE its invention in the early 1980s by Binnig and Rohrer1,2, the scanning tunnelling microscope (STM) has provided images of surfaces and adsorbed atoms and molecules with unprecedented resolution The STM has also been used to modify surfaces, for example by locally pinning molecules to a surface3 and by transfer of an atom from the STM tip to the surface4 Here we report the use of the STM at low temperatures (4 K) to position individual xenon atoms on a single-crystal nickel surface with atomic pre-cision This capacity has allowed us to fabricate rudimentary structures of our own design, atom by atom The processes we describe are in principle applicable to molecules also In view of the device-like characteristics reported for single atoms on surfaces5,6, the possibilities for perhaps the ultimate in device miniaturization are evident

2,765 citations