scispace - formally typeset
Search or ask a question
Author

Eadaoin Harney

Bio: Eadaoin Harney is an academic researcher from Harvard University. The author has contributed to research in topics: Population & Bronze Age. The author has an hindex of 21, co-authored 39 publications receiving 4843 citations. Previous affiliations of Eadaoin Harney include University of Cambridge & Howard Hughes Medical Institute.

Papers
More filters
Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: In this paper, the authors generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms.
Abstract: We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.

1,332 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: A genome-wide scan for selection using ancient DNA is reported, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data.
Abstract: Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

1,083 citations

Journal ArticleDOI
25 Aug 2016-Nature
TL;DR: This paper reported genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter-gatherers to Bronze Age farmers, showing that the earliest populations of the Near East derived around half their ancestry from a 'Basal Eurasian' lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other.
Abstract: We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.

695 citations

Journal ArticleDOI
Iñigo Olalde1, Selina Brace2, Morten E. Allentoft3, Ian Armit4  +166 moreInstitutions (69)
08 Mar 2018-Nature
TL;DR: Genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans is presented, finding limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and excludes migration as an important mechanism of spread between these two regions.
Abstract: From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.

479 citations

Journal ArticleDOI
Iain Mathieson1, Songül Alpaslan-Roodenberg1, Cosimo Posth2, Cosimo Posth3, Anna Szécsényi-Nagy4, Nadin Rohland1, Swapan Mallick5, Swapan Mallick1, Iñigo Olalde1, Nasreen Broomandkhoshbacht1, Nasreen Broomandkhoshbacht5, Francesca Candilio6, Olivia Cheronet6, Olivia Cheronet7, Daniel Fernandes6, Daniel Fernandes8, Matthew Ferry5, Matthew Ferry1, Beatriz Gamarra6, Gloria G. Fortes9, Wolfgang Haak2, Wolfgang Haak10, Eadaoin Harney5, Eadaoin Harney1, Eppie R. Jones11, Eppie R. Jones12, Denise Keating6, Ben Krause-Kyora2, Isil Kucukkalipci3, Megan Michel5, Megan Michel1, Alissa Mittnik2, Alissa Mittnik3, Kathrin Nägele2, Mario Novak6, Jonas Oppenheimer5, Jonas Oppenheimer1, Nick Patterson13, Saskia Pfrengle3, Kendra Sirak14, Kendra Sirak6, Kristin Stewardson1, Kristin Stewardson5, Stefania Vai15, Stefan Alexandrov16, Kurt W. Alt17, Radian Andreescu, Dragana Antonović, Abigail Ash6, Nadezhda Atanassova16, Krum Bacvarov16, Mende Balázs Gusztáv4, Hervé Bocherens3, Michael Bolus3, Adina Boroneanţ18, Yavor Boyadzhiev16, Alicja Budnik, Josip Burmaz, Stefan Chohadzhiev, Nicholas J. Conard3, Richard Cottiaux, Maja Čuka, Christophe Cupillard19, Dorothée G. Drucker3, Nedko Elenski, Michael Francken3, Borislava Galabova, Georgi Ganetsovski, Bernard Gély, Tamás Hajdu20, Veneta Handzhyiska21, Katerina Harvati3, Thomas Higham22, Stanislav Iliev, Ivor Janković23, Ivor Karavanić23, Ivor Karavanić24, Douglas J. Kennett25, Darko Komšo, Alexandra Kozak26, Damian Labuda27, Martina Lari15, Cătălin Lazăr28, Maleen Leppek29, Krassimir Leshtakov21, Domenico Lo Vetro15, Dženi Los, Ivaylo Lozanov21, Maria Malina3, Fabio Martini15, Kath McSweeney30, Harald Meller, Marko Menđušić, Pavel Mirea, Vyacheslav Moiseyev, Vanya Petrova21, T. Douglas Price31, Angela Simalcsik18, Luca Sineo32, Mario Šlaus33, Vladimir Slavchev, Petar Stanev, Andrej Starović, Tamás Szeniczey20, Sahra Talamo2, Maria Teschler-Nicola34, Maria Teschler-Nicola7, Corinne Thevenet, Ivan Valchev21, Frédérique Valentin19, Sergey Vasilyev35, Fanica Veljanovska, Svetlana Venelinova, Elizaveta Veselovskaya35, Bence Viola36, Bence Viola35, Cristian Virag, Joško Zaninović, Steve Zäuner, Philipp W. Stockhammer29, Philipp W. Stockhammer2, Giulio Catalano32, Raiko Krauß3, David Caramelli15, Gunita Zariņa37, Bisserka Gaydarska38, Malcolm Lillie39, Alexey G. Nikitin40, Inna Potekhina26, Anastasia Papathanasiou, Dusan Boric41, Clive Bonsall30, Johannes Krause3, Johannes Krause2, Ron Pinhasi7, Ron Pinhasi6, David Reich5, David Reich13, David Reich1 
08 Mar 2018-Nature
TL;DR: It is shown that southeastern Europe continued to be a nexus between east and west after the arrival of farmers, with intermittent genetic contact with steppe populations occurring up to 2,000 years earlier than the migrations from the steppe that ultimately replaced much of the population of northern Europe.
Abstract: Farming was first introduced to Europe in the mid-seventh millennium bc, and was associated with migrants from Anatolia who settled in the southeast before spreading throughout Europe. Here, to und ...

447 citations


Cited by
More filters
01 Jan 2010
TL;DR: In this paper, the authors show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait, revealing patterns with important implications for genetic studies of common human diseases and traits.
Abstract: Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

1,751 citations

Journal ArticleDOI
TL;DR: Some of the key events in the peopling of the world in the light of the findings of work on ancient DNA are reviewed.
Abstract: Ancient DNA research is revealing a human history far more complex than that inferred from parsimonious models based on modern DNA. Here, we review some of the key events in the peopling of the world in the light of the findings of work on ancient DNA.

1,365 citations

Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: In this paper, the authors generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms.
Abstract: We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.

1,332 citations

Journal ArticleDOI
11 Jun 2015-Nature
TL;DR: It is shown that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia.
Abstract: The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.

1,088 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: A genome-wide scan for selection using ancient DNA is reported, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data.
Abstract: Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe's first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.

1,083 citations