scispace - formally typeset
Search or ask a question
Author

Ear

Bio: Ear is an academic researcher. The author has contributed to research in topics: Renewal theory & Brownian motion. The author has an hindex of 1, co-authored 1 publications receiving 49 citations.

Papers
More filters
28 Aug 2011
TL;DR: In this paper, it was shown that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional poisson process with Mittag-Leffler waiting times.
Abstract: The fractional Poisson process is a renewal process with Mittag-Leffler waiting times. Its distributions solve a time-fractional analogue of the Kolmogorov forward equation for a Poisson process. This paper shows that a traditional Poisson process, with the time variable replaced by an independent inverse stable subordinator, is also a fractional Poisson process. This result unifies the two main approaches in the stochastic theory of time-fractional diffusion equations. The equivalence extends to a broad class of renewal processes that include models for tempered fractional diffusion, and distributed-order (e.g., ultraslow) fractional diffusion. The paper also {discusses the relation between} the fractional Poisson process and Brownian time.

50 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a fractional calculus and theory of diffusion equations associated with operators in the time variable, where k is a nonnegative locally integrable function, and the solution of the Cauchy problem for the relaxation equation was proved (under some conditions upon k) continuous on [0, ∞) and completely monotone.
Abstract: We develop a kind of fractional calculus and theory of relaxation and diffusion equations associated with operators in the time variable, of the form \({(\mathbb D_{(k)} u)(t)=\frac{d}{dt} \int olimits_0^tk(t-\tau )u(\tau )\,d\tau-k(t)u(0)}\) where k is a nonnegative locally integrable function. Our results are based on the theory of complete Bernstein functions. The solution of the Cauchy problem for the relaxation equation \({\mathbb D_{(k)} u=-\lambda u}\), λ > 0, proved to be (under some conditions upon k) continuous on [0, ∞) and completely monotone, appears in the description by Meerschaert, Nane, and Vellaisamy of the process N(E(t)) as a renewal process. Here N(t) is the Poisson process of intensity λ, E(t) is an inverse subordinator.

283 citations

Journal ArticleDOI
TL;DR: In this article, the correlation function for time-changed L evy processes has been studied in the context of continuous time random walks, where the second-order correlation function of a continuous-time random walk is defined.
Abstract: Time-changed L evy processes include the fractional Poisson process, and the scaling limit of a continuous time random walk. They are obtained by replacing the deterministic time variable by a positive non-decreasing random process. The use of time-changed processes in modeling often requires the knowledge of their second order properties such as the correlation function. This paper provides the explicit expression for the correlation function for time-changed L evy processes. The processes used to model random time include subordinators and inverse subordinators, and the time-changed L evy processes include limits of continuous time random walks. Several examples useful in applications are discussed.

68 citations

Journal ArticleDOI
TL;DR: This paper shows that the probability density function of an inverse tempered stable subordinator solves a tempered time-fractional diffusion equation, and its “folded” density solves a temperamental telegraph equation.
Abstract: The inverse tempered stable subordinator is a stochastic process that models power law waiting times between particle movements, with an exponential tempering that allows all moments to exist. This paper shows that the probability density function of an inverse tempered stable subordinator solves a tempered time-fractional diffusion equation, and its “folded” density solves a tempered time-fractional telegraph equation. Two explicit formulae for the density function are developed, and applied to compute explicit solutions to tempered fractional Cauchy problems, where a tempered fractional derivative replaces the first derivative in time. Several examples are given, including tempered fractional diffusion equations on bounded or unbounded domains, and the probability distribution of a tempered fractional Poisson process. It is shown that solutions to the tempered fractional diffusion equation have a cusp at the origin.

57 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered time-changed Poisson processes and derived the governing difference-differential equations (DDEs) for these processes, and derived a new governing partial differential equation for the tempered stable subordinator of index 0 β 1.

51 citations

Journal ArticleDOI
TL;DR: In this paper, the authors define fractional Skellam processes via the time changes in Poisson and Skekam processes by an inverse of a standard stable subordinator.
Abstract: The recent literature on high frequency financial data includes models that use the difference of two Poisson processes, and incorporate a Skellam distribution for forward prices. The exponential distribution of inter-arrival times in these models is not always supported by data. Fractional generalization of Poisson process, or fractional Poisson process, overcomes this limitation and has Mittag-Leffler distribution of inter-arrival times. This paper defines fractional Skellam processes via the time changes in Poisson and Skellam processes by an inverse of a standard stable subordinator. An application to high frequency financial data set is provided to illustrate the advantages of models based on fractional Skellam processes.

47 citations