scispace - formally typeset
Search or ask a question
Author

Eckhard Thines

Bio: Eckhard Thines is an academic researcher from University of Mainz. The author has contributed to research in topics: Magnaporthe grisea & Appressorium. The author has an hindex of 26, co-authored 112 publications receiving 2859 citations. Previous affiliations of Eckhard Thines include University of Exeter & Schrödinger.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of identification, characterization, transport and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bio-aerosols play in the Earth system.

588 citations

Journal ArticleDOI
TL;DR: Glycogen and lipid degradation were very rapid in a Δmac1 sum1-99 mutant, which carries a mutation in the regulatory subunit of PKA, occurring before appressorium morphogenesis was complete, indicating that mass transfer of storage carbohydrate and lipid reserves to the appressoria occurs under control of the PMK1 MAPK pathway.
Abstract: Magnaporthe grisea produces an infection structure called an appressorium, which is used to breach the plant cuticle by mechanical force. Appressoria generate hydrostatic turgor by accumulating molar concentrations of glycerol. To investigate the genetic control and biochemical mechanism for turgor generation, we assayed glycerol biosynthetic enzymes during appressorium development, and the movement of storage reserves was monitored in developmental mutants. Enzymatic activities for glycerol generation from carbohydrate sources were present in appressoria but did not increase during development. In contrast, triacylglycerol lipase activity increased during appressorium maturation. Rapid glycogen degradation occurred during conidial germination, followed by accumulation in incipient appressoria and dissolution before turgor generation. Lipid droplets also moved to the incipient appressorium and coalesced into a central vacuole before degrading at the onset of turgor generation. Glycogen and lipid mobilization did not occur in a Δpmk1 mutant, which lacked the mitogen-activated protein kinase (MAPK) required for appressorium differentiation, and was retarded markedly in a ΔcpkA mutant, which lacks the catalytic subunit of cAMP-dependent protein kinase A (PKA). Glycogen and lipid degradation were very rapid in a Δmac1 sum1-99 mutant, which carries a mutation in the regulatory subunit of PKA, occurring before appressorium morphogenesis was complete. Mass transfer of storage carbohydrate and lipid reserves to the appressorium therefore occurs under control of the PMK1 MAPK pathway. Turgor generation then proceeds by compartmentalization and rapid degradation of lipid and glycogen reserves under control of the CPKA/SUM1-encoded PKA holoenzyme.

431 citations

Journal ArticleDOI
TL;DR: In this paper, the abundant biomaterial lignin was used to prepare hollow nanocapsules by interfacial polyaddition in inverse miniemulsions, which can be loaded with hydrophilic substances which can then be released by an enzymatic trigger from natural plant extracts revealing them as potential nanocontainers for agricultural applications.
Abstract: The abundant biomaterial lignin was used to prepare hollow nanocapsules by interfacial polyaddition in inverse miniemulsions. These cross-linked lignin nanocontainers can be loaded with hydrophilic substances which can be released by an enzymatic trigger from natural plant extracts revealing them as potential nanocontainers for agricultural applications.

155 citations

Journal ArticleDOI
TL;DR: The data show that the polar class IV CHSs are essential for morphogenesis ex planta, whereas the class V myosin-CHS is essential during plant infection.
Abstract: Fungal chitin synthases (CHSs) form fibers of the cell wall and are crucial for substrate invasion and pathogenicity. Filamentous fungi contain up to 10 CHSs, which might reflect redundant functions or the complex biology of these fungi. Here, we investigate the complete repertoire of eight CHSs in the dimorphic plant pathogen Ustilago maydis. We demonstrate that all CHSs are expressed in yeast cells and hyphae. Green fluorescent protein (GFP) fusions to all CHSs localize to septa, whereas Chs5-GFP, Chs6-GFP, Chs7-yellow fluorescent protein (YFP), and Myosin chitin synthase1 (Mcs1)-YFP were found at growth regions of yeast-like cells and hyphae, indicating that they participate in tip growth. However, only the class IV CHS genes chs7 and chs5 are crucial for shaping yeast cells and hyphae ex planta. Although most CHS mutants were attenuated in plant pathogenicity, Δchs6, Δchs7, and Δmcs1 mutants were drastically reduced in virulence. Δmcs1 showed no morphological defects in hyphae, but Mcs1 became essential during invasion of the plant epidermis. Δmcs1 hyphae entered the plant but immediately lost growth polarity and formed large aggregates of spherical cells. Our data show that the polar class IV CHSs are essential for morphogenesis ex planta, whereas the class V myosin-CHS is essential during plant infection.

136 citations

Journal ArticleDOI
TL;DR: Observations suggest that Con7p encodes a transcription factor required for the transcription of several genes which participate in disease‐related morphogenesis in M. grisea.
Abstract: Summary A strain harbouring an insertion within the promoter of the CON7 gene of Magnaporthe grisea was isolated. This gene was previously shown to be essential for appressorium formation and growth in planta and is predicted to encode a transcription factor. Microarray-based gene expression analysis was used to identify several genes whose transcription during germination depends on Con7p. These include the pathogenicity factor-encoding gene PTH11 and several other genes which like PTH11 are predicted to encode G protein-coupled receptors. Microarray analysis also revealed several Con7p-dependent genes which may encode factors determining cell wall structure or function, either through the synthesis/degradation of cell wall components or by association with the cell exterior. One Con7p-dependent gene predicted to encode a class VII chitin synthase was deleted, leading to dramatic consequences on the pathogenic development of the resultant strain. Within the con7– mutant, a 29% reduction in chitin content of germinated spores was found and the mutant was hypersensitive to the chitin synthase inhibitor nikkomycin Z. A green fluorescent protein-tagged Con7p was found to have nuclear localization within spores. Taken together, these observations suggest that Con7p encodes a transcription factor required for the transcription of several genes which participate in disease-related morphogenesis in M. grisea.

131 citations


Cited by
More filters
Journal ArticleDOI
21 Apr 2005-Nature
TL;DR: The draft sequence of the M. grisea genome is reported, reflecting the clonal nature of this fungus imposed by widespread rice cultivation and analysis of the gene set provides an insight into the adaptations required by a fungus to cause disease.
Abstract: Magnaporthe grisea is the most destructive pathogen of rice worldwide and the principal model organism for elucidating the molecular basis of fungal disease of plants. Here, we report the draft sequence of the M. grisea genome. Analysis of the gene set provides an insight into the adaptations required by a fungus to cause disease. The genome encodes a large and diverse set of secreted proteins, including those defined by unusual carbohydrate-binding domains. This fungus also possesses an expanded family of G-protein-coupled receptors, several new virulence-associated genes and large suites of enzymes involved in secondary metabolism. Consistent with a role in fungal pathogenesis, the expression of several of these genes is upregulated during the early stages of infection-related development. The M. grisea genome has been subject to invasion and proliferation of active transposable elements, reflecting the clonal nature of this fungus imposed by widespread rice cultivation.

1,520 citations

Journal ArticleDOI
TL;DR: This Review focuses on methods developed to synthesize polymers derived from lignin, monolignols, and lignIn-derived chemicals, such as vanillin.
Abstract: The majority of commodity plastics and materials are derived from petroleum-based chemicals, illustrating the strong dependence on products derived from non-renewable energy sources. As the most accessible, renewable form of carbon (in comparison to CO2), lignocellulosic biomass (defined as organic matter available on a renewable basis) has been acknowledged as the most logical carbon-based feedstock for a variety of materials such as biofuels and chemicals. This Review focuses on methods developed to synthesize polymers derived from lignin, monolignols, and lignin-derived chemicals. Major topics include the structure and processing of lignocellulosic biomass to lignin, polymers utilizing lignin as a macromonomer, synthesis of monomers and polymers from monolignols, and polymers from lignin-derived chemicals, such as vanillin.

1,008 citations

Journal Article
TL;DR: The in vitro substrates recognized by most yeast protein kinases are described, with the use of proteome chip technology, and these results will provide insights into the mechanisms and roles of protein phosphorylation in many eukaryotes.
Abstract: Protein phosphorylation is estimated to affect 30% of the proteome and is a major regulatory mechanism that controls many basic cellular processes. Until recently, our biochemical understanding of protein phosphorylation on a global scale has been extremely limited; only one half of the yeast kinases have known in vivo substrates and the phosphorylating kinase is known for less than 160 phosphoproteins. Here we describe, with the use of proteome chip technology, the in vitro substrates recognized by most yeast protein kinases: we identified over 4,000 phosphorylation events involving 1,325 different proteins. These substrates represent a broad spectrum of different biochemical functions and cellular roles. Distinct sets of substrates were recognized by each protein kinase, including closely related kinases of the protein kinase A family and four cyclin-dependent kinases that vary only in their cyclin subunits. Although many substrates reside in the same cellular compartment or belong to the same functional category as their phosphorylating kinase, many others do not, indicating possible new roles for several kinases. Furthermore, integration of the phosphorylation results with protein-protein interaction and transcription factor binding data revealed novel regulatory modules. Our phosphorylation results have been assembled into a first-generation phosphorylation map for yeast. Because many yeast proteins and pathways are conserved, these results will provide insights into the mechanisms and roles of protein phosphorylation in many eukaryotes.

923 citations

Journal ArticleDOI
TL;DR: Recent progress toward understanding the molecular biology of plant infection by M. grisea is reviewed, which involves development of a specialized cell, the appressorium, which generates enormous turgor pressure and physical force, allowing the fungus to breach the host cuticle and invade plant tissue.
Abstract: The blast fungus Magnaporthe grisea causes a serious disease on a wide variety of grasses including rice, wheat, and barley. Rice blast is the most serious disease of cultivated rice and therefore poses a threat to the world's most important food security crop. Here, I review recent progress toward understanding the molecular biology of plant infection by M. grisea, which involves development of a specialized cell, the appressorium. This dome-shaped cell generates enormous turgor pressure and physical force, allowing the fungus to breach the host cuticle and invade plant tissue. The review also considers the role of avirulence genes in M. grisea and the mechanisms by which resistant rice cultivars are able to perceive the fungus and defend themselves. Finally, the likely mechanisms that promote genetic diversity in M. grisea and our current understanding of the population structure of the blast fungus are evaluated.

873 citations

Journal ArticleDOI
TL;DR: This work shows how functional genomics approaches are providing new insight into the genetic control of plant infection by M. oryzae, and looks ahead to the key questions that need to be addressed to provide a better understanding of the molecular processes that lead to plant disease and the prospects for sustainable control of rice blast.
Abstract: The filamentous fungus Magnaporthe oryzae causes rice blast, the most serious disease of cultivated rice. Cellular differentiation of M. oryzae forms an infection structure called the appressorium, which generates enormous cellular turgor that is sufficient to rupture the plant cuticle. Here, we show how functional genomics approaches are providing new insight into the genetic control of plant infection by M. oryzae. We also look ahead to the key questions that need to be addressed to provide a better understanding of the molecular processes that lead to plant disease and the prospects for sustainable control of rice blast.

811 citations