scispace - formally typeset
Search or ask a question
Author

Ed Lein

Other affiliations: University of Washington
Bio: Ed Lein is an academic researcher from Allen Institute for Brain Science. The author has contributed to research in topics: Cell type & Neocortex. The author has an hindex of 13, co-authored 29 publications receiving 1592 citations. Previous affiliations of Ed Lein include University of Washington.

Papers
More filters
Journal ArticleDOI
21 Aug 2019-Nature
TL;DR: RNA-sequencing analysis of cells in the human cortex enabled identification of diverse cell types, revealing well-conserved architecture and homologous cell types as well as extensive differences when compared with datasets covering the analogous region of the mouse brain.
Abstract: Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.

1,044 citations

Journal ArticleDOI
26 Dec 2018-PLOS ONE
TL;DR: It is demonstrated that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis, and the high information content of nuclear RNA for characterization of cellular diversity in brain tissues is illustrated.
Abstract: Transcriptomic profiling of complex tissues by single-nucleus RNA-sequencing (snRNA-seq) affords some advantages over single-cell RNA-sequencing (scRNA-seq). snRNA-seq provides less biased cellular coverage, does not appear to suffer cell isolation-based transcriptional artifacts, and can be applied to archived frozen specimens. We used well-matched snRNA-seq and scRNA-seq datasets from mouse visual cortex to compare cell type detection. Although more transcripts are detected in individual whole cells (~11,000 genes) than nuclei (~7,000 genes), we demonstrate that closely related neuronal cell types can be similarly discriminated with both methods if intronic sequences are included in snRNA-seq analysis. We estimate that the nuclear proportion of total cellular mRNA varies from 20% to over 50% for large and small pyramidal neurons, respectively. Together, these results illustrate the high information content of nuclear RNA for characterization of cellular diversity in brain tissues.

368 citations

Journal ArticleDOI
Nathan W. Gouwens1, Staci A. Sorensen1, Jim Berg1, Changkyu Lee1, Tim Jarsky1, Jonathan T. Ting1, Susan M. Sunkin1, David Feng1, Costas A. Anastassiou1, Eliza Barkan1, Kris Bickley1, Nicole Blesie1, Thomas Braun1, Krissy Brouner1, Agata Budzillo1, Shiella Caldejon1, Tamara Casper1, Dan Castelli1, Peter Chong1, Kirsten Crichton1, Christine Cuhaciyan1, Tanya L. Daigle1, Rachel A. Dalley1, Nick Dee1, Tsega Desta1, Songlin Ding1, Samuel Dingman1, Alyse Doperalski1, Nadezhda Dotson1, Tom Egdorf1, Michael S. Fisher1, Rebecca de Frates1, Emma Garren1, Marissa Garwood1, Amanda Gary1, Nathalie Gaudreault1, Keith B. Godfrey1, Melissa Gorham1, Hong Gu1, Caroline Habel1, Kristen Hadley1, James Harrington1, Julie A. Harris1, Alex M. Henry1, DiJon Hill1, Samuel R Josephsen1, Sara Kebede1, Lisa Kim1, Matthew Kroll1, Brian Lee1, Tracy Lemon1, Katherine E. Link1, Xiaoxiao Liu1, Brian Long1, Rusty Mann1, Medea McGraw1, Stefan Mihalas1, Alice Mukora1, Gabe J. Murphy1, Lindsay Ng1, Kiet Ngo1, Thuc Nghi Nguyen1, Philip R. Nicovich1, Aaron Oldre1, Daniel Park1, Sheana Parry1, Jed Perkins1, Lydia Potekhina1, David Reid1, Miranda Robertson1, David Sandman1, Martin Schroedter1, Cliff Slaughterbeck1, Gilberto J. Soler-Llavina1, Josef Sulc1, Aaron Szafer1, Bosiljka Tasic1, Naz Taskin1, Corinne Teeter1, Nivretta Thatra1, Herman Tung1, Wayne Wakeman1, Grace Williams1, Rob Young1, Zhi Zhou1, Colin Farrell1, Hanchuan Peng1, Michael Hawrylycz1, Ed Lein1, Lydia Ng1, Anton Arkhipov1, Amy Bernard1, John W. Phillips1, Hongkui Zeng1, Christof Koch1 
TL;DR: A single-cell characterization pipeline is established using standardized patch-clamp recordings in brain slices and biocytin-based neuronal reconstructions to establish a morpho-electrical taxonomy of cell types for the mouse visual cortex via unsupervised clustering analysis of multiple quantitative features.
Abstract: Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To systematically profile morpho-electric properties of mammalian neurons, we established a single-cell characterization pipeline using standardized patch-clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly accessible online database, the Allen Cell Types Database, to display these datasets. Intrinsic physiological properties were measured from 1,938 neurons from the adult laboratory mouse visual cortex, morphological properties were measured from 461 reconstructed neurons, and 452 neurons had both measurements available. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We established a taxonomy of morphologically and electrophysiologically defined cell types for this region of the cortex, with 17 electrophysiological types, 38 morphological types and 46 morpho-electric types. There was good correspondence with previously defined transcriptomic cell types and subclasses using the same transgenic mouse lines.

328 citations

Journal ArticleDOI
TL;DR: Molecular, morphological, and physiological evidence points to an emerging human cell type, the rosehip cell, not found in other species, which is positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.
Abstract: We describe convergent evidence from transcriptomics, morphology, and physiology for a specialized GABAergic neuron subtype in human cortex. Using unbiased single-nucleus RNA sequencing, we identify ten GABAergic interneuron subtypes with combinatorial gene signatures in human cortical layer 1 and characterize a group of human interneurons with anatomical features never described in rodents, having large ‘rosehip’-like axonal boutons and compact arborization. These rosehip cells show an immunohistochemical profile (GAD1+CCK+, CNR1–SST–CALB2–PVALB–) matching a single transcriptomically defined cell type whose specific molecular marker signature is not seen in mouse cortex. Rosehip cells in layer 1 make homotypic gap junctions, predominantly target apical dendritic shafts of layer 3 pyramidal neurons, and inhibit backpropagating pyramidal action potentials in microdomains of the dendritic tuft. These cells are therefore positioned for potent local control of distal dendritic computation in cortical pyramidal neurons.

204 citations

Journal ArticleDOI
26 Sep 2018-eLife
TL;DR: It is found that connections are sparse but present among all excitatory cell classes and layers the authors sampled, and that most mouse synapses exhibited short-term depression with similar dynamics, contributing to a body of evidence describing recurrent exciteatory connectivity as a conserved feature of cortical microcircuits.
Abstract: The outer sheet of brain tissue, the neocortex, is composed of circuits formed from trillions of connections among billions of neurons, of which there are about one hundred different neuron types. The scale and complexity of cortical circuitry pose experimental challenges, leading to an incomplete understanding of how cortical cell types are connected and the computations that take place at the connections. About half of the cell types in the brain are excitatory, which means they can activate other cells. The cortex consists of several distinct layers of cells, within which excitatory cells cooperate to process the signals they receive from other cortical layers and brain areas. Using recordings of electrical activity arising from the connections between pairs of excitatory neurons, Seeman, Campagnola et al. measured the likelihood and strength of connectivity among related groups of excitatory cell types in slices of cortex taken from human and mouse brains. The initial results confirm previous findings that individual layers of human cortex can have more and stronger excitatory connections than the same layers of mouse cortex. In most layers of mouse cortex, repeatedly activating the excitatory cells leads to progressively weaker responses. However, in the upper layers of mouse cortex, the opposite effect is sometimes seen: more excitatory activity causes the connections to generate stronger responses. By feeding these data into a computer model, Seeman, Campagnola et al. described and compared the activity of the groups of related excitatory cell types. These results are the first of a new, large-scale project where findings can be integrated across experiments to gain a more detailed picture of cortical circuitry and computation. Neuroscientists will be able to use the results to build advanced computer models of cortical circuits. Such models will, for example, generate predictions for how the attributes of excitatory connectivity revealed by Seeman, Campagnola et al. influence how information is processed in the cortex. In so doing, the models will add to our understanding of how the human brain works both in health and in disease.

127 citations


Cited by
More filters
Journal ArticleDOI
Aviv Regev1, Aviv Regev2, Aviv Regev3, Sarah A. Teichmann4, Sarah A. Teichmann5, Sarah A. Teichmann6, Eric S. Lander7, Eric S. Lander2, Eric S. Lander1, Ido Amit8, Christophe Benoist7, Ewan Birney5, Bernd Bodenmiller9, Bernd Bodenmiller5, Peter J. Campbell4, Peter J. Campbell6, Piero Carninci4, Menna R. Clatworthy10, Hans Clevers11, Bart Deplancke12, Ian Dunham5, James Eberwine13, Roland Eils14, Roland Eils15, Wolfgang Enard16, Andrew Farmer, Lars Fugger17, Berthold Göttgens4, Nir Hacohen7, Nir Hacohen2, Muzlifah Haniffa18, Martin Hemberg6, Seung K. Kim19, Paul Klenerman20, Paul Klenerman17, Arnold R. Kriegstein21, Ed S. Lein22, Sten Linnarsson23, Emma Lundberg24, Emma Lundberg19, Joakim Lundeberg24, Partha P. Majumder, John C. Marioni5, John C. Marioni4, John C. Marioni6, Miriam Merad25, Musa M. Mhlanga26, Martijn C. Nawijn27, Mihai G. Netea28, Garry P. Nolan19, Dana Pe'er29, Anthony Phillipakis2, Chris P. Ponting30, Stephen R. Quake19, Wolf Reik31, Wolf Reik6, Wolf Reik4, Orit Rozenblatt-Rosen2, Joshua R. Sanes7, Rahul Satija32, Ton N. Schumacher33, Alex K. Shalek2, Alex K. Shalek1, Alex K. Shalek34, Ehud Shapiro8, Padmanee Sharma35, Jay W. Shin, Oliver Stegle5, Michael R. Stratton6, Michael J. T. Stubbington6, Fabian J. Theis36, Matthias Uhlen37, Matthias Uhlen24, Alexander van Oudenaarden11, Allon Wagner38, Fiona M. Watt39, Jonathan S. Weissman, Barbara J. Wold40, Ramnik J. Xavier, Nir Yosef34, Nir Yosef38, Human Cell Atlas Meeting Participants 
05 Dec 2017-eLife
TL;DR: An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease.
Abstract: The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

1,391 citations

Journal ArticleDOI
21 Aug 2019-Nature
TL;DR: RNA-sequencing analysis of cells in the human cortex enabled identification of diverse cell types, revealing well-conserved architecture and homologous cell types as well as extensive differences when compared with datasets covering the analogous region of the mouse brain.
Abstract: Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.

1,044 citations

Journal ArticleDOI
TL;DR: Diverse approaches for integrative single-cell analysis are discussed, including experimental methods for profiling multiple omics types from the same cells, analytical approaches for extracting additional layers of information directly from scRNA-seq data and computational integration of omics data collected across different cell samples.
Abstract: The recent maturation of single-cell RNA sequencing (scRNA-seq) technologies has coincided with transformative new methods to profile genetic, epigenetic, spatial, proteomic and lineage information in individual cells. This provides unique opportunities, alongside computational challenges, for integrative methods that can jointly learn across multiple types of data. Integrated analysis can discover relationships across cellular modalities, learn a holistic representation of the cell state, and enable the pooling of data sets produced across individuals and technologies. In this Review, we discuss the recent advances in the collection and integration of different data types at single-cell resolution with a focus on the integration of gene expression data with other types of single-cell measurement.

892 citations

01 Apr 2016
TL;DR: Tirosh et al. as discussed by the authors applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells.
Abstract: Single-cell expression profiles of melanoma Tumors harbor multiple cell types that are thought to play a role in the development of resistance to drug treatments. Tirosh et al. used single-cell sequencing to investigate the distribution of these differing genetic profiles within melanomas. Many cells harbored heterogeneous genetic programs that reflected two different states of genetic expression, one of which was linked to resistance development. Following drug treatment, the resistance-linked expression state was found at a much higher level. Furthermore, the environment of the melanoma cells affected their gene expression programs. Science, this issue p. 189 Melanoma cells show transcriptional heterogeneity. To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.

823 citations

Journal ArticleDOI
TL;DR: This work investigates ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue and in cells derived from subsegmental bronchial branches by single nuclei and single cell RNA sequencing, suggesting increased vulnerability for SARS‐CoV‐2 infection.
Abstract: The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis.

808 citations