scispace - formally typeset
Search or ask a question
Author

Eddie Cytryn

Bio: Eddie Cytryn is an academic researcher from Agricultural Research Organization, Volcani Center. The author has contributed to research in topics: Antibiotic resistance & Resistome. The author has an hindex of 33, co-authored 76 publications receiving 5482 citations. Previous affiliations of Eddie Cytryn include University of Minnesota & Hebrew University of Jerusalem.


Papers
More filters
Journal ArticleDOI
TL;DR: The main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment are discussed.
Abstract: Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.

1,495 citations

Journal ArticleDOI
TL;DR: Two related alternatives are conjecture to explain the improved plant performance under biochar treatment: the biochar stimulated shifts in microbial populations towards beneficial plant growth promoting rhizobacteria or fungi, and low doses of biochar chemicals, many of which are phytotoxic or biocidal at high concentrations, stimulated plant growth at low doses (hormesis).
Abstract: The impact of additions (1–5% by weight) of a nutrient-poor, wood-derived biochar on pepper (Capsicum annuum L.) and tomato (Lycopersicum esculentum Mill.) plant development and productivity in a coconut fiber:tuff growing mix under optimal fertigation conditions was examined. Pepper plant development in the biochar-treated pots was significantly enhanced as compared with the unamended controls. This was reflected by a system-wide increase in most measured plant parameters: leaf area, canopy dry weight, number of nodes, and yields of buds, flowers and fruit. In addition to the observed increases in plant growth and productivity, the rhizosphere of biochar-amended pepper plants had significantly greater abundances of culturable microbes belonging to prominent soil-associated groups. Phylogenetic characterization of unique bacterial isolates based on 16S rRNA gene analysis demonstrated that of the 20 unique identified isolates from roots and bulk soil from the char-amended growing mix, 16 were affiliated with previously described plant growth promoting and/or biocontrol agents. In tomato, biochar treatments positively enhanced plant height and leaf size, but had no effect on flower and fruit yield. The positive impacts of biochar on plant response were not due to direct or indirect effects on plant nutrition, as there were no differences between control and treatments in leaf nutrient content. Nor did biochar affect the field capacity of the soilless mixture. A number of organic compounds belonging to various chemical classes, including n-alkanoic acids, hydroxy and acetoxy acids, benzoic acids, diols, triols, and phenols were identified in organic solvent extracts of the biochar. We conjecture two related alternatives to explain the improved plant performance under biochar treatment: (i) the biochar stimulated shifts in microbial populations towards beneficial plant growth promoting rhizobacteria or fungi, due to either chemical or physical attributes of the biochar; or (ii) low doses of biochar chemicals, many of which are phytotoxic or biocidal at high concentrations, stimulated plant growth at low doses (hormesis).

695 citations

Journal ArticleDOI
01 Jun 2007-Science
TL;DR: It is shown by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes.
Abstract: Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.

574 citations

Journal ArticleDOI
TL;DR: This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation, and the implications associated with the uptake of antibiotics by plants and the potential risks to public health are highlighted.

349 citations

Journal ArticleDOI
TL;DR: Assessment of the effect of biochar amendment on the root-associated bacterial community composition of mature sweet pepper (Capsicum annuum L.) plants found that the Bacteroidetes-affiliated Flavobacterium was the strongest biochar-induced genus and chitin and cellulose degraders includedChitinophaga and Cellvibrio, respectively and aromatic compound degrades (Hydrogenophagaand Dechloromonas).
Abstract: Adding biochar to soil has environmental and agricultural potential due to its long-term carbon sequestration capacity and its ability to improve crop productivity. Recent studies have demonstrated that soil-applied biochar promotes the systemic resistance of plants to several prominent foliar pathogens. One potential mechanism for this phenomenon is root-associated microbial elicitors whose presence is somehow augmented in the biochar-amended soils. The objective of this study was to assess the effect of biochar amendment on the root-associated bacterial community composition of mature sweet pepper (Capsicum annuum L.) plants. Molecular fingerprinting (denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism) of 16S rRNA gene fragments showed a clear differentiation between the root-associated bacterial community structures of biochar-amended and control plants. The pyrosequencing of 16S rRNA amplicons from the rhizoplane of both treatments generated a total of 20,142 sequences, 92 to 95% of which were affiliated with the Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes phyla. The relative abundance of members of the Bacteroidetes phylum increased from 12 to 30% as a result of biochar amendment, while that of the Proteobacteria decreased from 71 to 47%. The Bacteroidetes-affiliated Flavobacterium was the strongest biochar-induced genus. The relative abundance of this group increased from 4.2% of total root-associated operational taxonomic units (OTUs) in control samples to 19.6% in biochar-amended samples. Additional biochar-induced genera included chitin and cellulose degraders (Chitinophaga and Cellvibrio, respectively) and aromatic compound degraders (Hydrogenophaga and Dechloromonas). We hypothesize that these biochar-augmented genera may be at least partially responsible for the beneficial effect of biochar amendment on plant growth and viability.

336 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing pathogens, as inoculant carriers or for manipulative experiments to sorb signaling compounds or toxins as mentioned in this paper.
Abstract: Soil amendment with biochar is evaluated globally as a means to improve soil fertility and to mitigate climate change. However, the effects of biochar on soil biota have received much less attention than its effects on soil chemical properties. A review of the literature reveals a significant number of early studies on biochar-type materials as soil amendments either for managing pathogens, as inoculant carriers or for manipulative experiments to sorb signaling compounds or toxins. However, no studies exist in the soil biologyliterature that recognize the observed largevariations ofbiochar physico-chemical properties. This shortcoming has hampered insight into mechanisms by which biochar influences soil microorganisms, fauna and plant roots. Additional factors limiting meaningful interpretation of many datasets are the clearly demonstrated sorption properties that interfere with standard extraction procedures for soil microbial biomass or enzyme assays, and the confounding effects of varying amounts of minerals. In most studies, microbial biomass has been found to increase as a result of biochar additions, with significant changes in microbial community composition and enzyme activities that may explain biogeochemical effects of biochar on element cycles, plant pathogens, and crop growth. Yet, very little is known about the mechanisms through which biochar affects microbial abundance and community composition. The effects of biochar on soil fauna are even less understood than its effects on microorganisms, apart from several notable studies on earthworms. It is clear, however, that sorption phenomena, pH and physical properties of biochars such as pore structure, surface area and mineral matter play important roles in determining how different biochars affect soil biota. Observations on microbial dynamics lead to the conclusion of a possible improved resource use due to co-location of various resources in and around biochars. Sorption and therebyinactivation of growth-inhibiting substances likelyplaysa rolefor increased abundance of soil biota. No evidence exists so far for direct negative effects of biochars on plant roots. Occasionally observed decreases in abundance of mycorrhizal fungi are likely caused by concomitant increases in nutrient availability,reducing theneedfor symbionts.Inthe shortterm,therelease ofavarietyoforganic molecules from fresh biochar may in some cases be responsible for increases or decreases in abundance and activity of soil biota. A road map for future biochar research must include a systematic appreciation of different biochar-types and basic manipulative experiments that unambiguously identify the interactions between biochar and soil biota.

3,612 citations

Journal ArticleDOI
24 Dec 2015-Nature
TL;DR: The discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers, and the genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation.
Abstract: Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.

1,648 citations

Journal ArticleDOI
TL;DR: The main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment are discussed.
Abstract: Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.

1,495 citations