scispace - formally typeset
Search or ask a question
Author

Eddy C. Carmack

Bio: Eddy C. Carmack is an academic researcher from Fisheries and Oceans Canada. The author has contributed to research in topics: Arctic & Sea ice. The author has an hindex of 67, co-authored 183 publications receiving 17511 citations. Previous affiliations of Eddy C. Carmack include National Water Research Institute & Scripps Institution of Oceanography.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examine the control of the vertical circulation in the northern seas, and the potential for altering it, by considering the budgets and storage of fresh water in the Arctic Ocean and in the convective regions to the south.
Abstract: Salinity stratification is critical to the vertical circulation of the high-latitude ocean. We here examine the control of the vertical circulation in the northern seas, and the potential for altering it, by considering the budgets and storage of fresh water in the Arctic Ocean and in the convective regions to the south. We find that the present-day Greenland and Iceland seas, and probably also the Labrador Sea, are rather delicately poised with respect to their ability to sustain convection. Small variations in the fresh water supplied to the convective gyres from the Arctic Ocean via the East Greenland Current can alter or stop the convection in what may be a modern analog to the halocline catastrophes proposed for the distant past. The North Atlantic salinity anomaly of the 1960s and 1970s is a recent example; it must have had its origin in an increased fresh water discharge from the Arctic Ocean. Similarly, the freshening and cooling of the deep North Atlantic in recent years is a likely manifestation of the increased transfer of fresh water from the Arctic Ocean into the convective gyres. Finally, we note that because of the temperature dependence of compressibility, a slight salinity stratification in the convective gyres is required to efficiently ventilate the deep ocean.

1,627 citations

Journal ArticleDOI
10 Mar 2006-Science
TL;DR: Until recently, northern Bering Sea ecosystems were characterized by extensive seasonal sea ice cover, high water column and sediment carbon production, and tight pelagic-benthic coupling of organic production, but it is shown that these ecosystems are shifting away from these characteristics.
Abstract: Until recently, northern Bering Sea ecosystems were characterized by extensive seasonal sea ice cover, high water column and sediment carbon production, and tight pelagic-benthic coupling of organic production. Here, we show that these ecosystems are shifting away from these characteristics. Changes in biological communities are contemporaneous with shifts in regional atmospheric and hydrographic forcing. In the past decade, geographic displacement of marine mammal population distributions has coincided with a reduction of benthic prey populations, an increase in pelagic fish, a reduction in sea ice, and an increase in air and ocean temperatures. These changes now observed on the shallow shelf of the northern Bering Sea should be expected to affect a much broader portion of the Pacific-influenced sector of the Arctic Ocean.

855 citations

Journal ArticleDOI
TL;DR: The renewal of the deep North Atlantic by the various overflows of the Greenland-Scotland ridges is only one manifestation of the convective and mixing processes which occur in the various basins and shelf areas to the north: the Arctic Ocean and the Greenland, Iceland, and Norwegian seas, collectively called the Arctic Mediterranean.
Abstract: The renewal of the deep North Atlantic by the various overflows of the Greenland-Scotland ridges is only one manifestation of the convective and mixing processes which occur in the various basins and shelf areas to the north: the Arctic Ocean and the Greenland, Iceland, and Norwegian seas, collectively called the Arctic Mediterranean The traditional site of deep ventilation for these basins is the Greenland Sea, but a growing body of evidence also points to the Arctic Ocean as a major source of deep water This deep water is relatively warm and saline, and it appears to be a mixture of dense, brine-enriched shelf water with intermediate strata in the Arctic Ocean The deep water exits the Arctic Ocean along the Greenland slope to mix with the Greenland Sea deep water Conversely, very cold low-salinity deep water from the Greenland Sea enters the Arctic Ocean west of Spitsbergen Within the Arctic Ocean, the Lomonosov Ridge excludes the Greenland Sea deep water from the Canadian Basin, leaving the latter warm, saline, and rich in silica In general, the entire deep-water sphere of the Arctic Mediterranean is constrained by the Greenland-Scotland ridges to circulate internally Therefore it is certain of the intermediate waters formed in the Greenland and Iceland seas which ventilate the North Atlantic These waters have a very short residence time in their formation areas and are therefore able to rapidly transmit surface-induced signals into the deep North Atlantic

734 citations

Journal ArticleDOI
01 Jun 1981
TL;DR: The cold upper halcoline of the Arctic Ocean is maintained by large-scale lateral advection from the adjoining continental shelves, where dense and saline shelf water is produced during freezing; the salinization of the water column is especially pronounced in certain areas of persistent ice divergence as mentioned in this paper.
Abstract: The cold upper halcoline of the Arctic Ocean is maintained by large-scale lateral advection from the adjoining continental shelves, where dense and saline shelf water is produced during freezing; the salinization of the water column is especially pronounced in certain areas of persistent ice divergence. Estimates show the annual rate at which the dense shelf water feeds into the Polar Basin is probably in the neighborhood of 2.5 x 106 m3 s−1; this is of the same order as the inflow of warm and saline water from the Atlantic. A consequence of this process is that the halocline must be a heat sink for the underlying Atlantic water, thereby shielding the ice cover from an upward heat flux. The Atlantic water is thus linked rather directly to the enormous shelf seas that border the Polar Basin. Proposed massive river diversions in the Arctic could, by increasing the shelf salinities and driving a deeper flow into the interior, cause a thinning of the halocline and place the Atlantic water in more direct contact with the surface mixed layer.

717 citations

Journal ArticleDOI
23 Oct 2009-Science
TL;DR: In the Arctic Ocean, phytoplankton cell sizes have decreased with warming temperatures and fresher surface waters, and since 2004, there has been an increase in the smallest algae and bacteria along with a concomitant decrease in somewhat larger algae.
Abstract: As climate changes and the upper Arctic Ocean receives more heat and fresh water, it becomes more difficult for mixing processes to deliver nutrients from depth to the surface for phytoplankton growth. Competitive advantage will presumably accrue to small cells because they are more effective in acquiring nutrients and less susceptible to gravitational settling than large cells. Since 2004, we have discerned an increase in the smallest algae and bacteria along with a concomitant decrease in somewhat larger algae. If this trend toward a community of smaller cells is sustained, it may lead to reduced biological production at higher trophic levels.

628 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A new version of the Hadley Centre coupled model (HadCM3) that does not require flux adjustments to prevent large climate drifts in the simulation is presented in this article.
Abstract: Results are presented from a new version of the Hadley Centre coupled model (HadCM3) that does not require flux adjustments to prevent large climate drifts in the simulation The model has both an improved atmosphere and ocean component In particular, the ocean has a 125° × 125° degree horizontal resolution and leads to a considerably improved simulation of ocean heat transports compared to earlier versions with a coarser resolution ocean component The model does not have any spin up procedure prior to coupling and the simulation has been run for over 400 years starting from observed initial conditions The sea surface temperature (SST) and sea ice simulation are shown to be stable and realistic The trend in global mean SST is less than 0009 °C per century In part, the improved simulation is a consequence of a greater compatibility of the atmosphere and ocean model heat budgets The atmospheric model surface heat and momentum budget are evaluated by comparing with climatological ship-based estimates Similarly the ocean model simulation of poleward heat transports is compared with direct ship-based observations for a number of sections across the globe Despite the limitations of the observed datasets, it is shown that the coupled model is able to reproduce many aspects of the observed heat budget

2,674 citations

Journal ArticleDOI
01 May 1995
TL;DR: In this article, large-scale features of the Antarctic Circumpolar Current (ACC) were described using all historical hydrographic data available from the Southern Ocean, and the geopotential anomaly of the sea surface relative to 1000 db reveals the highly-sheared eastward flow of the ACC and the strong steering of the current by the ridge system around Antarctica.
Abstract: Large-scale features of the Antarctic Circumpolar Current (ACC) are described using all historical hydrographic data available from the Southern Ocean. The geopotential anomaly of the sea surface relative to 1000 db reveals the highly-sheared eastward flow of the ACC and the strong steering of the current by the ridge system around Antarctica. The near-surface property distributions differentiate the ACC waters from the warmer and saltier waters of the subtropical regimes. The Subtropical Front (STF), interrupted only by South America, marks the northern most extent of subantarctic waters. Distributions of properties on isopycnal surfaces show an abrupt end to the characteristic signal of the Upper Circumpolar Deep Water (UCDW), as this water mass shoals southward and is entrained into the surface mixed layer. This sharp water mass boundary nearly coincides with the southernmost circumpolar streamline passing through Drake Passage. To its south are the weakly-sheared circulations of the subpolar regime. Inspection of many hydrographic crossings of this transition reveals that the poleward edge of the UCD W signal is a reasonable definition of the southern boundary of the ACC. At Drake Passage, three deep-reaching fronts account for most of the ACC transport. Well-established indicators of the Subantarctic Front and Polar Front are traced unbroken around Antarctica. The third deep-reaching front observed to the south of the Polar Front at Drake Passage also continues with similar characteristics as a circumpolar feature. It is called here the southern ACC front. Stations from multiple synoptic transects of these circumpolar fronts are used to describe the average property structure within each ACC zone. Between the STF and the southern boundary of the ACC, the shear transport of the circumpolar current above 3000 m is at all longitudes about 100 Sv (1 Sv = 106 m3 s−) eastward.

2,513 citations

Journal ArticleDOI
TL;DR: In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects.
Abstract: In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wideranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

2,136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present asynthesis of these observations, and conclude that roughly half of the pronounced recent rise in Northern Hemispherewinter temperatures reflects shifts in atmosphericcirculation. But, such changes are not consistent with anthropogenic forcing and include generally positive phases of the North Atlantic and ArcticOscillations and extratropical responses to the El-NinoSouthern Oscillation.
Abstract: Studies from a variety of disciplines documentrecentchange in the northern high-latitude environment.Prompted by predictions of an amplified response oftheArctic to enhanced greenhouse forcing, we present asynthesis of these observations. Pronounced winter andspring warming over northern continents since about 1970ispartly compensated by cooling over the northern NorthAtlantic. Warming is also evident over the centralArcticOcean. There is a downward tendency in sea ice extent,attended by warming and increased areal extent of theArctic Ocean's Atlantic layer. Negative snow coveranomalies have dominated over both continents sincethelate 1980s and terrestrial precipitation has increasedsince 1900. Small Arctic glaciers have exhibitedgenerally negative mass balances. While permafrost haswarmed in Alaska and Russia, it has cooled in easternCanada. There is evidence of increased plant growth,attended by greater shrub abundance and northwardmigration of the tree line. Evidence also suggeststhatthe tundra has changed from a net sink to a net sourceofatmospheric carbon dioxide.Taken together, these results paint a reasonablycoherent picture of change, but their interpretationassignals of enhanced greenhouse warming is open todebate.Many of the environmental records are either short,areof uncertain quality, or provide limited spatialcoverage. The recent high-latitude warming is also nolarger than the interdecadal temperature range duringthis century. Nevertheless, the general patterns ofchange broadly agree with model predictions. Roughlyhalfof the pronounced recent rise in Northern Hemispherewinter temperatures reflects shifts in atmosphericcirculation. However, such changes are notinconsistentwith anthropogenic forcing and include generallypositive phases of the North Atlantic and ArcticOscillations and extratropical responses to theEl-NinoSouthern Oscillation. An anthropogenic effect is alsosuggested from interpretation of the paleoclimaterecord,which indicates that the 20th century Arctic is thewarmest of the past 400 years.

2,081 citations