scispace - formally typeset
Search or ask a question
Author

Éder Tadeu Gomes Cavalheiro

Bio: Éder Tadeu Gomes Cavalheiro is an academic researcher from University of São Paulo. The author has contributed to research in topics: Thermal decomposition & Thermogravimetry. The author has an hindex of 25, co-authored 80 publications receiving 2383 citations. Previous affiliations of Éder Tadeu Gomes Cavalheiro include University of Münster & Federal University of São Carlos.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an evaluation of hydration and thermal decomposition of HAlg and its sodium salt is described using thermogravimetry and differential scanning calorimetry (DSC).
Abstract: An evaluation of hydration and thermal decomposition of HAlg and its sodium salt is described using thermogravimetry (TG) and differential scanning calorimetry (DSC). TG curves in N2 and air, were obtained for alginic acid showed two decomposition steps attributed to loss of water and polymer decomposition respectively. The sodium alginate decomposed in three steps. The first attributed to water loss, followed by the formation of a carbonaceous residue and finally the Na2CO3. DSC curves presented peaks in agreement with the TG data. In the IR alginic acid presented bands at 1730 and 1631 cm-1, while sodium alginate presented a doublet at 1614 e 1431 cm-1, evidencing the presence of salified carboxyl groups.

353 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used DSC curves as an alternative method to determine the degree of N-acetylation (DA) in chitin/chitosan samples, based in both peak area and height of the decomposition signal.

256 citations

Journal ArticleDOI
TL;DR: In this article, the degree of acetylation of chitosan was determined from the ratio between the integrated area of the proton signal corresponding to the acetamido group (H-Ac) and that of the H-2 of the GlucN unit.

188 citations

Journal ArticleDOI
TL;DR: A simple, fast and sensitive method is proposed for Tryptophan (Trp) determination in pharmaceutical formulations containing other non-electroative aminoacids, vitamins and hydroxycobalamines.

125 citations

Journal ArticleDOI
15 Mar 2008-Talanta
TL;DR: The results indicate that this electrodes modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol is sensitive and effective for simultaneous determination of Pb2+, Cu2+ and Hg2+ in the analysed samples.

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A functional characterization of chitin and chitosan regarding some biological properties and some specific applications (drug delivery, tissue engineering, functional food, food preservative, biocatalyst immobilization, wastewater treatment, molecular imprinting and metal nanocomposites) is presented.
Abstract: Chitin and its deacetylated derivative chitosan are natural polymers composed of randomly distributed � -(1-4)- linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). Chitin is insoluble in aqueous media while chitosan is soluble in acidic conditions due to the free protonable amino groups present in the D-glucosamine units. Due to their natural origin, both chitin and chitosan can not be defined as a unique chemical structure but as a fam- ily of polymers which present a high variability in their chemical and physical properties. This variability is related not only to the origin of the samples but also to their method of preparation. Chitin and chitosan are used in fields as different as food, biomedicine and agriculture, among others. The success of chitin and chitosan in each of these specific applica- tions is directly related to deep research into their physicochemical properties. In recent years, several reviews covering different aspects of the applications of chitin and chitosan have been published. However, these reviews have not taken into account the key role of the physicochemical properties of chitin and chitosan in their possible applications. The aim of this review is to highlight the relationship between the physicochemical properties of the polymers and their behaviour. A functional characterization of chitin and chitosan regarding some biological properties and some specific applications (drug delivery, tissue engineering, functional food, food preservative, biocatalyst immobilization, wastewater treatment, molecular imprinting and metal nanocomposites) is presented. The molecular mechanism of the biological properties such as biocompatibility, mucoadhesion, permeation enhancing effect, anticholesterolemic, and antimicrobial has been up- dated.

1,015 citations

Journal ArticleDOI
TL;DR: The chemical modification affords a wide range of derivatives with modified properties for specific end use applications in diversified areas mainly of pharmaceutical, biomedical and biotechnological fields.
Abstract: Of late, the most bountiful natural biopolymer chitin and chitosan have become cynosure of all party because of an unusual combination of biological activities plus mechanical and physical properties. However applications of chitin are limited due to its inherent insoluble and intractable nature. Chitosan, alkaline hydrolytic derivative of chitin has better solubility profile, less crystallinity and is amenable to chemical modifications due to presence of functional groups as hydroxyl, acetamido, and amine. The chemical modification of chitosan is of interest because the modification would not change the fundamental skeleton of chitosan, would keep the original physicochemical and biochemical properties and finally would bring new or improved properties. In view of rapidly growing interest in chitosan its chemical aspects and chemical modification studies is reviewed. The several chemical modifications such as oligomerization, alkylation, acylation, quternization, hydroxyalkylation, carboxyalkylation, thiolation, sulfation, phosphorylation, enzymatic modifications and graft copolymerization along with many assorted modifications have been carried out. The chemical modification affords a wide range of derivatives with modified properties for specific end use applications in diversified areas mainly of pharmaceutical, biomedical and biotechnological fields. Assorted modifications including chitosan hybrids with sugars, cyclodextrin, dendrimers, and crown ethers have also emerged as interesting multifunctional macromolecules. The versatility in possible modifications and applications of chitosan derivatives presents a great challenge to scientific community and to industry. The successful acceptance of this challenge will change the role of chitosan from being a molecule in waiting to a lead player.

898 citations

Journal ArticleDOI
TL;DR: A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques, so this review focuses on the application of Spectroscopic methods for the structural analysis of these compounds.
Abstract: Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.

848 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the structure, property and modification of triglyceride oils and synthesis of polymers there from is presented, including the scope, limitations, and possibility of utilizing such methods for various applications.

713 citations

Journal ArticleDOI
TL;DR: An overview of recent developments in this field is provided and selected examples are discussed in detail, including the preparation and characterization of castor oil-derived polyurethanes, polyesters and polyamides.
Abstract: Castor oil is, as many other plant oils, a very valuable renewable resource for the chemical industry. This review article provides an overview on this specialty oil, covering its production and properties. More importantly, the preparation, properties and major application possibilities of chemical derivatives of castor oil are highlighted. Our discussion focuses on application possibilities of castor oil and its derivatives for the synthesis of renewable monomers and polymers. An overview of recent developments in this field is provided and selected examples are discussed in detail, including the preparation and characterization of castor oil-derived polyurethanes, polyesters and polyamides.

596 citations