scispace - formally typeset
Search or ask a question
Author

Edgar Avalos

Bio: Edgar Avalos is an academic researcher from Tohoku University. The author has contributed to research in topics: Virial coefficient & Materials science. The author has an hindex of 10, co-authored 26 publications receiving 642 citations. Previous affiliations of Edgar Avalos include National Central University & Universidad Autónoma Metropolitana.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce the physics of solitary waves in alignments of elastic beads, such as glass beads or stainless steel beads, and show that any impulse propagates as a new kind of highly interactive solitary wave through such an alignment and that the existence of these waves seems to present a need to re-examine the very definition of equilibrium.

374 citations

Journal ArticleDOI
TL;DR: In this article, the equilibrium between vapour and liquid in a square-well system has been determined by a hybrid simulation approach combining chemical potentials calculated via the Gibbs ensemble Monte Carlo technique with pressures calculated by the standard NVT Monte Carlo method.
Abstract: The equilibrium between vapour and liquid in a square-well system has been determined by a hybrid simulation approach combining chemical potentials calculated via the Gibbs ensemble Monte Carlo technique with pressures calculated by the standard NVT Monte Carlo method. The phase equilibrium was determined from the thermodynamic conditions of equality of pressure and chemical potential between the two phases. The results of this hybrid approach were tested by independent NPT and μPT calculations and are shown to be of much higher accuracy than those of conventional GEMC simulations. The coexistence curves, vapour pressures and critical points were determined for SW systems of interaction ranges λ = 1.25, 1.5, 1.75 and 2. The new results show a systematic dependence on the range λ, in agreement with results from perturbation theory where previous work had shown more erratic behaviour.

115 citations

Journal ArticleDOI
TL;DR: A set of coupled Cahn-Hilliard equations is numerically studied as a means to find morphologies of diblock copolymers in three-dimensional spherical confinement to find a variety of energy minimizers including rings, tennis balls, Janus balls and multipods.
Abstract: We numerically study a set of coupled Cahn-Hilliard equations as a means to find morphologies of diblock copolymers in three-dimensional spherical confinement. This approach allows us to find a variety of energy minimizers including rings, tennis balls, Janus balls and multipods among several others. Phase diagrams of confined morphologies are presented. We modify the size of the interface between microphases to control the number of holes in multipod morphologies. Comparison to experimental observation by transmission electron microtomography of multipods in polystyrene-polyisoprene diblock copolymers is also presented.

35 citations

Journal ArticleDOI
31 Jan 2018
TL;DR: The experimental results of annealing block copolymer nanoparticles and a theoretical model to describe the morphological transformation of ellipsoids with striped lamellae into onionlike spheres are presented and it is anticipated that the proposed approach will facilitate the design and more precise control of experiments involving various kinds ofAnnealing processes.
Abstract: Annealing of block copolymers has become a tool of great importance for the reconfiguration of nanoparticles Here, we present the experimental results of annealing block copolymer nanoparticles and a theoretical model to describe the morphological transformation of ellipsoids with striped lamellae into onionlike spheres A good correspondence between the experimental findings and predictions of the model was observed The model based on finding the steepest direction of descent of an appropriate free energy leads to a set of Cahn–Hilliard equations that correctly describe the dynamical transformation of striped ellipsoids into onionlike spheres and reverse onionlike particles, regardless of the nature of the annealing process This universality makes it possible to describe a variety of experimental conditions involving nanoparticles underlying a heating process A notable advantage of the proposed approach is that it enables selective control of the interaction between the confined block copolymer and t

32 citations

Journal ArticleDOI
TL;DR: Arguments and associated simulations are presented to address a crucial unknown, namely, why the secondary solitary waves must form in an intrinsically nonlinear many-body system.
Abstract: Solitary waves in continuum media pass through each other with only a slight phase change. However, in an intrinsically nonlinear many-body system such solitary waves could behave differently. It was predicted and experimentally confirmed that head-on solitary wave collisions in granular alignments are followed by the formation of tiny secondary solitary waves in the vicinity of the collision point. While it remains a challenge to provide an analytical treatment of the local time evolution, we present arguments and associated simulations to address a crucial unknown, namely, why the secondary solitary waves must form. Extensive numerical investigations on solitary wave collisions at a grain center and at an edge show marked differences. The effects of softening the grain repulsion are discussed to validate the arguments.

27 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

01 Mar 2001
TL;DR: Using singular value decomposition in transforming genome-wide expression data from genes x arrays space to reduced diagonalized "eigengenes" x "eigenarrays" space gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype.
Abstract: ‡We describe the use of singular value decomposition in transforming genome-wide expression data from genes 3 arrays space to reduced diagonalized ‘‘eigengenes’’ 3 ‘‘eigenarrays’’ space, where the eigengenes (or eigenarrays) are unique orthonormal superpositions of the genes (or arrays). Normalizing the data by filtering out the eigengenes (and eigenarrays) that are inferred to represent noise or experimental artifacts enables meaningful comparison of the expression of different genes across different arrays in different experiments. Sorting the data according to the eigengenes and eigenarrays gives a global picture of the dynamics of gene expression, in which individual genes and arrays appear to be classified into groups of similar regulation and function, or similar cellular state and biological phenotype, respectively. After normalization and sorting, the significant eigengenes and eigenarrays can be associated with observed genome-wide effects of regulators, or with measured samples, in which these regulators are overactive or underactive, respectively.

1,815 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the physics of solitary waves in alignments of elastic beads, such as glass beads or stainless steel beads, and show that any impulse propagates as a new kind of highly interactive solitary wave through such an alignment and that the existence of these waves seems to present a need to re-examine the very definition of equilibrium.

374 citations