scispace - formally typeset
Search or ask a question
Author

Edmund B. Wilson

Bio: Edmund B. Wilson is an academic researcher from Columbia University. The author has contributed to research in topics: Heredity & Centrosome. The author has an hindex of 26, co-authored 63 publications receiving 3827 citations.
Topics: Heredity, Centrosome, Autosome, Cytology, Darwinism


Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: At the present time, with the immense increase in research activity in mammalian cytology, the terminology of the centromeric position has become burdened by much obscurity and confusion.
Abstract: N the inorphologic identification of chromosomes, the location of the I centromere is the most useful landmark, and one which is characterized by great constancy. It would seem that not much could be added to the definitions by E. B. WILSON (1928) of the locations on the chromosome of the centrornere or, in the terminology of that time, the spindle attachment: “Attachment of the chromosome to the spindle is commonly limited to a small area, and is of two general types, namely: (1) terminnl or telomitic and (2) non-ferminal or atelomitic, being in the former case at one end, and in the latter at some other point or points. Non-terminal attachment may be at the middle point (median) or at an intermediate point (submedian, sub-terminal). All gradations exist between these various cases;” (I.c., p. 130-131). In the acconipanying picture (l.c., Fig. 56, p. 132), here reprinted as Fig. l., the four locations of median, submedian, subterminal and terminal are represented, and, in addition, “lateral”, which corresponds to the modern term “diffuse centromere”. Nevertheless, at the present time, with the immense increase in research activity in mammalian cytology, the terminology of the centromeric position has become burdened by much obscurity and confusion. One cause of confusion is that different authors, and even the same author on different occasions, have used the terms median, submedian etc. with great amplitude, and it is often difficult to know in a specific case what each term signifies. Another cause of confusion is that a set of terms for chromosomes with specific centromeric positions, such as metacentric, acrocentric, telocentric, have come into wide usage without being clearly defined in relation to the positional terms median, submedian, subterminal and terminal. During the spring of 1963 the present writers exchanged epistolary

5,352 citations

Journal ArticleDOI
TL;DR: The first crystallographic analysis of a non-γ-tubulin γTuRC component has resulted in a new appreciation of the relationships among all γ TuRC proteins, leading to a refined model of their organization and function.
Abstract: Microtubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function. The structures have also suggested an unexpected mechanism for regulating γTuRC activity via conformational modulation of the complex component GCP3. New experiments on γTuRC localization extend these insights, suggesting a direct link between its attachment at specific cellular sites and its activation.

3,494 citations

Journal ArticleDOI
TL;DR: This review describes progress toward understanding the mechanism of dynamic instability of pure tubulin and discusses the function and regulation of microtubule dynamic instability in living cells.
Abstract: The polymerization dynamics of microtubules are central to their biological functions. Polymerization dynamics allow microtubules to adopt spatial arrangements that can change rapidly in response to cellular needs and, in some cases, to perform mechanical work. Microtubules utilize the energy of GTP hydrolysis to fuel a unique polymerization mechanism termed dynamic instability. In this review, we first describe progress toward understanding the mechanism of dynamic instability of pure tubulin and then discuss the function and regulation of microtubule dynamic instability in living cells.

2,484 citations

Journal ArticleDOI
22 Sep 2017-Science
TL;DR: The findings together suggest that several membrane-less organelles have been shown to exhibit a concentration threshold for assembly, a hallmark of phase separation, and represent liquid-phase condensates, which form via a biologically regulated (liquid-liquid) phase separation process.
Abstract: BACKGROUND Living cells contain distinct subcompartments to facilitate spatiotemporal regulation of biological reactions. In addition to canonical membrane-bound organelles such as secretory vesicles and endoplasmic reticulum, there are many organelles that do not have an enclosing membrane yet remain coherent structures that can compartmentalize and concentrate specific sets of molecules. Examples include assemblies in the nucleus such as the nucleolus, Cajal bodies, and nuclear speckles and also cytoplasmic structures such as stress granules, P-bodies, and germ granules. These structures play diverse roles in various biological processes and are also increasingly implicated in protein aggregation diseases. ADVANCES A number of studies have shown that membrane-less assemblies exhibit remarkable liquid-like features. As with conventional liquids, they typically adopt round morphologies and coalesce into a single droplet upon contact with one another and also wet intracellular surfaces such as the nuclear envelope. Moreover, component molecules exhibit dynamic exchange with the surrounding nucleoplasm and cytoplasm. These findings together suggest that these structures represent liquid-phase condensates, which form via a biologically regulated (liquid-liquid) phase separation process. Liquid phase condensation increasingly appears to be a fundamental mechanism for organizing intracellular space. Consistent with this concept, several membrane-less organelles have been shown to exhibit a concentration threshold for assembly, a hallmark of phase separation. At the molecular level, weak, transient interactions between molecules with multivalent domains or intrinsically disordered regions (IDRs) are a driving force for phase separation. In cells, condensation of liquid-phase assemblies can be regulated by active processes, including transcription and various posttranslational modifications. The simplest physical picture of a homogeneous liquid phase is often not enough to capture the full complexity of intracellular condensates, which frequently exhibit heterogeneous multilayered structures with partially solid-like characters. However, recent studies have shown that multiple distinct liquid phases can coexist and give rise to richly structured droplet architectures determined by the relative liquid surface tensions. Moreover, solid-like phases can emerge from metastable liquid condensates via multiple routes of potentially both kinetic and thermodynamic origins, which has important implications for the role of intracellular liquids in protein aggregation pathologies. OUTLOOK The list of intracellular assemblies driven by liquid phase condensation is growing rapidly, but our understanding of their sequence-encoded biological function and dysfunction lags behind. Moreover, unlike equilibrium phases of nonliving matter, living cells are far from equilibrium, with intracellular condensates subject to various posttranslational regulation and other adenosine triphosphate–dependent biological activity. Efforts using in vitro reconstitution, combined with traditional cell biology approaches and quantitative biophysical tools, are required to elucidate how such nonequilibrium features of living cells control intracellular phase behavior. The functional consequences of forming liquid condensates are likely multifaceted and may include facilitated reaction, sequestration of specific factors, and organization of associated intracellular structures. Liquid phase condensation is particularly interesting in the nucleus, given the growing interest in the impact of nuclear phase behavior on the flow of genetic information; nuclear condensates range from micrometer-sized bodies such as the nucleolus to submicrometer structures such as transcriptional assemblies, all of which directly interact with and regulate the genome. Deepening our understanding of these intracellular states of matter not only will shed light on the basic biology of cellular organization but also may enable therapeutic intervention in protein aggregation disease by targeting intracellular phase behavior.

2,432 citations

Journal ArticleDOI
TL;DR: The basic physical concepts necessary to understand the consequences of liquid-like states for biological functions are discussed.
Abstract: Cells organize many of their biochemical reactions in non-membrane compartments. Recent evidence has shown that many of these compartments are liquids that form by phase separation from the cytoplasm. Here we discuss the basic physical concepts necessary to understand the consequences of liquid-like states for biological functions.

2,088 citations