scispace - formally typeset
Search or ask a question
Author

Edoardo Persichetti

Bio: Edoardo Persichetti is an academic researcher from Florida Atlantic University. The author has contributed to research in topics: Cryptography & Coding theory. The author has an hindex of 15, co-authored 50 publications receiving 564 citations. Previous affiliations of Edoardo Persichetti include Florida State University College of Arts and Sciences & Dakota State University.

Papers published on a yearly basis

Papers
More filters
21 Dec 2017
TL;DR: HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not, for teaching and research institutions in France or abroad, or from public or private research centers.
Abstract: HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. BIKE: Bit Flipping Key Encapsulation Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Guneysu, Carlos Aguilar Melchor, et al.

119 citations

Book ChapterDOI
01 Dec 2019
TL;DR: An improved reduction for the security of the Hofheinz, Hovelmanns, and Kiltz (TCC’17) transform is improved which turns OW-CPA secure deterministic PKEs into IND-CCA secure KEMs.
Abstract: We revisit the construction of IND-CCA secure key encapsulation mechanisms (KEM) from public-key encryption schemes (PKE). We give new, tighter security reductions for several constructions. Our main result is an improved reduction for the security of the \(U^{ ot \bot }\)-transform of Hofheinz, Hovelmanns, and Kiltz (TCC’17) which turns OW-CPA secure deterministic PKEs into IND-CCA secure KEMs. This result is enabled by a new one-way to hiding (O2H) lemma which gives a tighter bound than previous O2H lemmas in certain settings and might be of independent interest. We extend this result also to the case of PKEs with non-zero decryption failure probability and non-deterministic PKEs. However, we assume that the derandomized PKE is injective with overwhelming probability.

60 citations

Posted Content
TL;DR: This paper introduces a construction based on Generalized Srivastava codes, a large class which includes Goppa codes as a special case, that allows relatively short public keys without being vulnerable to known structural attacks.
Abstract: The McEliece cryptosystem is one of the few systems to be considered secure against attacks by Quantum computers. The original scheme is built upon Goppa codes and produces very large keys, hence recent research has focused mainly on trying to reduce the public key size. Previous proposals tried to replace the class of Goppa codes with other families of codes, but this was revealed to be an insecure choice. In this paper we introduce a construction based on Generalized Srivastava codes, a large class which includes Goppa codes as a special case, that allows relatively short public keys without being vulnerable to known structural attacks.

55 citations

Journal ArticleDOI
TL;DR: In this paper, a construction based on Generalized Srivastava codes, a large class which includes Goppa codes as a special case, that allows relatively short public keys without being vulnerable to known structural attacks is presented.
Abstract: The McEliece cryptosystem is one of the few systems to be considered secure against attacks by Quantum computers. The original scheme is built upon Goppa codes and produces very large keys, hence recent research has focused mainly on trying to reduce the public key size. Previous proposals tried to replace the class of Goppa codes with other families of codes, but this was revealed to be an insecure choice. In this paper we introduce a construction based on Generalized Srivastava codes, a large class which includes Goppa codes as a special case, that allows relatively short public keys without being vulnerable to known structural attacks.

41 citations


Cited by
More filters
Journal Article
TL;DR: This work presents a general methodology and two protocol constructions that result in the first two public-key traitor tracing schemes with constant transmission rate in settings where plaintexts can be calibrated to be sufficientlylarge.
Abstract: An important open problem in the area of Traitor Tracing is designing a scheme with constant expansion of the size of keys (users' keys and the encryption key) and of the size of ciphertexts with respect to the size of the plaintext. This problem is known from the introduction of Traitor Tracing by Chor, Fiat and Naor. We refer to such schemes as traitor tracing with constant transmission rate. Here we present a general methodology and two protocol constructions that result in the first two public-key traitor tracing schemes with constant transmission rate in settings where plaintexts can be calibrated to be sufficiently large. Our starting point is the notion of copyrighted function which was presented by Naccache, Shamir and Stern. We first solve the open problem of discrete-log-based and public-key-based copyrighted function. Then, we observe the simple yet crucial relation between (public-key) copyrighted encryption and (public-key) traitor tracing, which we exploit by introducing a generic design paradigm for designing constant transmission rate traitor tracing schemes based on copyrighted encryption functions. Our first scheme achieves the same expansion efficiency as regular ElGamal encryption. The second scheme introduces only a slightly larger (constant) overhead, however, it additionally achieves efficient black-box traitor tracing (against any pirate construction).

649 citations

Journal Article
TL;DR: This conversion is the first generic transformation from an arbitrary one-way asymmetricryption scheme to a chosen-ciphertext secure asymmetric encryption scheme in the random oracle model.
Abstract: This paper shows a generic and simple conversion from weak asymmetric and symmetric encryption schemes into an asymmetric encryption scheme which is secure in a very strong sense- indistinguishability against adaptive chosen-ciphertext attacks in the random oracle model. In particular, this conversion can be applied efficiently to an asymmetric encryption scheme that provides a large enough coin space and, for every message, many enough variants of the encryption, like the ElGamal encryption scheme.

457 citations

Book ChapterDOI
12 Nov 2017
TL;DR: The Fujisaki-Okamoto (FO) transformation as discussed by the authors turns any weakly secure public-key encryption scheme into a strongly secure one in the random oracle model, but it suffers from several drawbacks such as a non-tight security reduction, and the need for a perfectly correct scheme.
Abstract: The Fujisaki-Okamoto (FO) transformation (CRYPTO 1999 and Journal of Cryptology 2013) turns any weakly secure public-key encryption scheme into a strongly (i.e., \(\mathsf {IND}\text {-}\mathsf {CCA}\)) secure one in the random oracle model. Unfortunately, the FO analysis suffers from several drawbacks, such as a non-tight security reduction, and the need for a perfectly correct scheme. While several alternatives to the FO transformation have been proposed, they have stronger requirements, or do not obtain all desired properties.

347 citations

Book
01 Jan 2010
TL;DR: Cryptosystems I and II: Cryptography between Wonderland and Underland as discussed by the authors, a simple BGN-type Cryptosystem from LWE, or Bonsai Trees, or how to delegate a Lattice Basis.
Abstract: Cryptosystems I.- On Ideal Lattices and Learning with Errors over Rings.- Fully Homomorphic Encryption over the Integers.- Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups.- Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption.- Obfuscation and Side Channel Security.- Secure Obfuscation for Encrypted Signatures.- Public-Key Encryption in the Bounded-Retrieval Model.- Protecting Circuits from Leakage: the Computationally-Bounded and Noisy Cases.- 2-Party Protocols.- Partial Fairness in Secure Two-Party Computation.- Secure Message Transmission with Small Public Discussion.- On the Impossibility of Three-Move Blind Signature Schemes.- Efficient Device-Independent Quantum Key Distribution.- Cryptanalysis.- New Generic Algorithms for Hard Knapsacks.- Lattice Enumeration Using Extreme Pruning.- Algebraic Cryptanalysis of McEliece Variants with Compact Keys.- Key Recovery Attacks of Practical Complexity on AES-256 Variants with up to 10 Rounds.- IACR Distinguished Lecture.- Cryptography between Wonderland and Underland.- Automated Tools and Formal Methods.- Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others.- Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR.- Computational Soundness, Co-induction, and Encryption Cycles.- Models and Proofs.- Encryption Schemes Secure against Chosen-Ciphertext Selective Opening Attacks.- Cryptographic Agility and Its Relation to Circular Encryption.- Bounded Key-Dependent Message Security.- Multiparty Protocols.- Perfectly Secure Multiparty Computation and the Computational Overhead of Cryptography.- Adaptively Secure Broadcast.- Universally Composable Quantum Multi-party Computation.- Cryptosystems II.- A Simple BGN-Type Cryptosystem from LWE.- Bonsai Trees, or How to Delegate a Lattice Basis.- Efficient Lattice (H)IBE in the Standard Model.- Hash and MAC.- Multi-property-preserving Domain Extension Using Polynomial-Based Modes of Operation.- Stam's Collision Resistance Conjecture.- Universal One-Way Hash Functions via Inaccessible Entropy.- Foundational Primitives.- Constant-Round Non-malleable Commitments from Sub-exponential One-Way Functions.- Constructing Verifiable Random Functions with Large Input Spaces.- Adaptive Trapdoor Functions and Chosen-Ciphertext Security.

320 citations