scispace - formally typeset
Search or ask a question
Author

Eduard A. Cartier

Bio: Eduard A. Cartier is an academic researcher from IBM. The author has contributed to research in topics: Gate dielectric & High-κ dielectric. The author has an hindex of 53, co-authored 247 publications receiving 10961 citations. Previous affiliations of Eduard A. Cartier include Katholieke Universiteit Leuven & GlobalFoundries.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the dispersion of the interfacial coupled phonon-plasmon modes, their electron-scattering strength, and their effect on the electron mobility for Si-gate structures were investigated.
Abstract: The high dielectric constant of insulators currently investigated as alternatives to SiO2 in metal–oxide–semiconductor structures is due to their large ionic polarizability. This is usually accompanied by the presence of soft optical phonons. We show that the long-range dipole field associated with the interface excitations resulting from these modes and from their coupling with surface plasmons, while small in the case of SiO2, for most high-κ materials causes a reduction of the effective electron mobility in the inversion layer of the Si substrate. We study the dispersion of the interfacial coupled phonon-plasmon modes, their electron-scattering strength, and their effect on the electron mobility for Si-gate structures employing films of SiO2, Al2O3, AlN, ZrO2, HfO2, and ZrSiO4 for “SiO2-equivalent” thicknesses ranging from 5 to 0.5 nm.

732 citations

Journal ArticleDOI
TL;DR: In this article, two mechanisms triggered by electron heating in the oxide conduction band are discussed: trap creation and band gap ionization by carriers with energies exceeding 2 and 9 eV, respectively.
Abstract: Degradation of silicon dioxide films is shown to occur primarily near interfaces with contacting metals or semiconductors. This deterioration is shown to be accountable through two mechanisms triggered by electron heating in the oxide conduction band. These mechanisms are trap creation and band‐gap ionization by carriers with energies exceeding 2 and 9 eV with respect to the bottom of the oxide conduction band, respectively. The relationship of band‐gap ionization to defect production and subsequent degradation is emphasized. The dependence of the generated sites on electric field, oxide thickness, temperature, voltage polarity, and processing for each mechanism is discussed. A procedure for separating and studying these two generation modes is also discussed. A unified model from simple kinetic relationships is developed and compared to the experimental results. Destructive breakdown of the oxide is shown to be correlated with ‘‘effective’’ interface softening due to the total defect generation caused by both mechanisms.

682 citations

Journal ArticleDOI
TL;DR: In this paper, it was concluded that the generation of neutral electron traps in thin oxides is the dominant cause of leakage currents introduced in the low-field, direct-tunneling regime of thin oxide during high-field stress.
Abstract: Leakage currents introduced in the low‐field, direct‐tunneling regime of thin oxides during high‐field stress are related to defects produced by hot‐electron transport in the oxide layer. From these studies, it is concluded that the ‘‘generation’’ of neutral electron traps in thin oxides is the dominant cause of this phenomenon. Other mechanisms due to anode hole injection or oxide nonuniformities are shown to be unrealistic for producing these currents. Exposure of thin oxides to atomic hydrogen from a remote plasma is shown to cause leakage currents similar to those observed after high‐field stress, supporting the conclusion that these currents are related to hydrogen‐induced defects.

524 citations

Journal ArticleDOI
TL;DR: A combination of two complementary depth profiling techniques with sub-nm depth resolution, nuclear resonance profiling and medium energy ion scattering, and cross-sectional high-resolution transmission electron microscopy were used to study compositional and microstructural aspects of ultrathin (sub-10 nm) Al2O3 films on silicon as mentioned in this paper.
Abstract: A combination of two complementary depth profiling techniques with sub-nm depth resolution, nuclear resonance profiling and medium energy ion scattering, and cross-sectional high-resolution transmission electron microscopy were used to study compositional and microstructural aspects of ultrathin (sub-10 nm) Al2O3 films on silicon. All three techniques demonstrate uniform continuous films of stoichiometric Al2O3 with abrupt interfaces. These film properties lead to the ability of making metal-oxide semiconductor devices with Al2O3 gate dielectric with equivalent electrical thickness in the sub-2 nm range.

397 citations

Journal ArticleDOI
TL;DR: An overview of recent work on ultrathin (, 100 A) films of metal oxides deposited on silicon for advanced gate dielectrics applications is presented in this article, where the authors illustrate the 23 2 2 2 3 complex processing, integration and device related issues for high dielectric constant ('high-K') materials.

376 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the literature in the area of alternate gate dielectrics is given, based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success.
Abstract: Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal–oxide–semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward success...

5,711 citations

Journal ArticleDOI
TL;DR: It is shown that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity, and its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate.
Abstract: The linear dispersion relation in graphene gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder or phonons, is independent of carrier density, n. Here we show that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 x1012 cm-2, we infer a mean free path for electron-acoustic phonon scattering of >2 microm and an intrinsic mobility limit of 2 x 105 cm2 V-1 s-1. If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility ( approximately 7.7 x 104 cm2 V-1 s-1; ref. 9) and that of semiconducting carbon nanotubes ( approximately 1 x 105 cm2 V-1 s-1; ref. 10). A strongly temperature-dependent resistivity contribution is observed above approximately 200 K (ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate and limit the room-temperature mobility to approximately 4 x 104 cm2 V-1 s-1, indicating the importance of substrate choice for graphene devices.

2,947 citations

Book
Yuan Taur1, Tak H. Ning1
01 Jan 2016
TL;DR: In this article, the authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices.
Abstract: Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally-renowned authors highlight the intricate interdependencies and subtle tradeoffs between various practically important device parameters, and also provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model, and SiGe-base bipolar devices.

2,680 citations

Journal ArticleDOI
TL;DR: In this paper, the surface chemistry of the trimethylaluminum/water ALD process is reviewed, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials.
Abstract: Atomic layer deposition(ALD), a chemical vapor deposition technique based on sequential self-terminating gas–solid reactions, has for about four decades been applied for manufacturing conformal inorganic material layers with thickness down to the nanometer range. Despite the numerous successful applications of material growth by ALD, many physicochemical processes that control ALD growth are not yet sufficiently understood. To increase understanding of ALD processes, overviews are needed not only of the existing ALD processes and their applications, but also of the knowledge of the surface chemistry of specific ALD processes. This work aims to start the overviews on specific ALD processes by reviewing the experimental information available on the surface chemistry of the trimethylaluminum/water process. This process is generally known as a rather ideal ALD process, and plenty of information is available on its surface chemistry. This in-depth summary of the surface chemistry of one representative ALD process aims also to provide a view on the current status of understanding the surface chemistry of ALD, in general. The review starts by describing the basic characteristics of ALD, discussing the history of ALD—including the question who made the first ALD experiments—and giving an overview of the two-reactant ALD processes investigated to date. Second, the basic concepts related to the surface chemistry of ALD are described from a generic viewpoint applicable to all ALD processes based on compound reactants. This description includes physicochemical requirements for self-terminating reactions,reaction kinetics, typical chemisorption mechanisms, factors causing saturation, reasons for growth of less than a monolayer per cycle, effect of the temperature and number of cycles on the growth per cycle (GPC), and the growth mode. A comparison is made of three models available for estimating the sterically allowed value of GPC in ALD. Third, the experimental information on the surface chemistry in the trimethylaluminum/water ALD process are reviewed using the concepts developed in the second part of this review. The results are reviewed critically, with an aim to combine the information obtained in different types of investigations, such as growth experiments on flat substrates and reaction chemistry investigation on high-surface-area materials. Although the surface chemistry of the trimethylaluminum/water ALD process is rather well understood, systematic investigations of the reaction kinetics and the growth mode on different substrates are still missing. The last part of the review is devoted to discussing issues which may hamper surface chemistry investigations of ALD, such as problematic historical assumptions, nonstandard terminology, and the effect of experimental conditions on the surface chemistry of ALD. I hope that this review can help the newcomer get acquainted with the exciting and challenging field of surface chemistry of ALD and can serve as a useful guide for the specialist towards the fifth decade of ALD research.

2,212 citations

Journal ArticleDOI
TL;DR: The first observation of saturating transistor characteristics in a graphene field-effect transistor is reported, demonstrating the feasibility of two-dimensional graphene devices for analogue and radio-frequency circuit applications without the need for bandgap engineering.
Abstract: The first observation of saturating transistor characteristics in a graphene field-effect transistor is reported. The saturation velocity is attributed to scattering by interfacial phonons in the silicon dioxide layer supporting the graphene channels. These results demonstrate the feasibility of graphene devices for analogue and radio-frequency circuit applications without the need for bandgap engineering.

1,600 citations