scispace - formally typeset
Search or ask a question
Author

Eduard J. Reijerse

Other affiliations: Radboud University Nijmegen
Bio: Eduard J. Reijerse is an academic researcher from Max Planck Society. The author has contributed to research in topics: Electron paramagnetic resonance & Hyperfine structure. The author has an hindex of 23, co-authored 59 publications receiving 2700 citations. Previous affiliations of Eduard J. Reijerse include Radboud University Nijmegen.


Papers
More filters
Journal ArticleDOI
04 Jul 2013-Nature
TL;DR: It is shown that three synthetic mimics (containing different bridging dithiolate ligands) can be loaded onto bacterial Thermotoga maritima HydF and then transferred to apo-HydA1, one of the hydrogenases of Chlamydomonas reinhardtii algae, providing new mechanistic and structural insight into hydrogenase maturation.
Abstract: Hydrogenases are the most active molecular catalysts for hydrogen production and uptake1, 2, and could therefore facilitate the development of new types of fuel cell3, 4, 5. In [FeFe]-hydrogenases, catalysis takes place at a unique di-iron centre (the [2Fe] subsite), which contains a bridging dithiolate ligand, three CO ligands and two CN- ligands6, 7. Through a complex multienzymatic biosynthetic process, this [2Fe] subsite is first assembled on a maturation enzyme, HydF, and then delivered to the apo-hydrogenase for activation8. Synthetic chemistry has been used to prepare remarkably similar mimics of that subsite1, but it has failed to reproduce the natural enzymatic activities thus far. Here we show that three synthetic mimics (containing different bridging dithiolate ligands) can be loaded onto bacterial Thermotoga maritima HydF and then transferred to apo-HydA1, one of the hydrogenases of Chlamydomonas reinhardtii algae. Full activation of HydA1 was achieved only when using the HydF hybrid protein containing the mimic with an azadithiolate bridge, confirming the presence of this ligand in the active site of native [FeFe]-hydrogenases9, 10. This is an example of controlled metalloenzyme activation using the combination of a specific protein scaffold and active-site synthetic analogues. This simple methodology provides both new mechanistic and structural insight into hydrogenase maturation and a unique tool for producing recombinant wild-type and variant [FeFe]-hydrogenases, with no requirement for the complete maturation machinery

557 citations

Journal ArticleDOI
TL;DR: Spectroscopic investigations of the active site of [FeFe] hydrogenase are presented, providing the first experimental evidence for a di-(thiomethyl)amine ligand (-S-CH(2)-NH-CH (2)-S-) in the bi-nuclear subcluster.
Abstract: Hydrogenases are enzymes catalyzing the reversible heterolytic splitting of molecular hydrogen. Despite extensive investigations of this class of enzymes its catalytic mechanism is not yet well understood. In this paper spectroscopic investigations of the active site of [FeFe] hydrogenase are presented. The so-called H-cluster consists of a bi-nuclear catalytically active subcluster connected to a [4Fe4S] ferredoxin-like unit via a Cys–thiol bridge. An important feature of the H-cluster is that both irons in the bi-nuclear subcluster are coordinated by CN and CO ligands. The bi-nuclear site also carries a dithiol bridge, whose central atom has not yet been identified. Nitrogen and oxygen are the most probable candidates from a mechanistic point of view. Here we present a study of the 14N nuclear quadrupole and hyperfine interactions of the active oxidized state of the H-cluster using advanced EPR methods. In total three 14N nuclei with quadrupole couplings of 0.95 MHz, 0.35 MHz and 1.23 MHz were detected using hyperfine sublevel correlation spectroscopy (HYSCORE). The assignment of the signals is based on their 14N quadrupole couplings in combination with DFT calculations. One signal is assigned to the CN ligand of the distal iron, one to a Lys side chain nitrogen and one to the putative nitrogen of the dithiol bridge. Hence, these results provide the first experimental evidence for a di-(thiomethyl)amine ligand (–S–CH2–NH–CH2–S–) in the bi-nuclear subcluster. This finding is important for understanding the mechanism of [FeFe] hydrogenases, since the nitrogen is likely to act as an internal base facilitating the heterolytic splitting/formation of H2.

346 citations

Journal ArticleDOI
TL;DR: In this article, the authors showed that the deactivation of polylithiated, carbosilane (CS) dendrimers is caused by irreversible formation of catalytically inactive Ni(III) sites on the periphery of these dendrilers.
Abstract: Transmetalation of polylithiated, carbosilane (CS) dendrimers functionalized with the potentially terdentate ligand [C6H2(CH2NMe2)2-2,6-R-4]- ( = NCN) with NiCl2(PEt3)2 produced a series of nickel-containing dendrimers [G0]-Ni4 (4), [G1]-Ni12 (5), and [G2]-Ni36 (7) in moderate to good yields. The metallodendrimers 4, 5, and 7 are catalytically active in the atom-transfer radical addition (ATRA) reaction (Kharasch addition reaction), viz. the 1:1 addition of CCl4 to methyl methacrylate (MMA). The catalytic data were compared to those obtained for the respective mononuclear compound [NiCl(C6H2{CH2NMe2}2-2,6-SiMe3-4)] (2). This comparison indicates a fast deactivation for the dendrimer catalysts beyond generation [G0]. The deactivation of [G1]-Ni12 (5) and [G2]-Ni36 (7) is caused by irreversible formation of catalytically inactive Ni(III) sites on the periphery of these dendrimers. This hypothesis is supported by results of model studies as well as ESR spectroscopic investigations. Interestingly, the use of two alternative nickelated [G1] dendrimers [G1]*-Ni12 (11) and [G1]-Ni8 (15), respectively, in which the distance between the Ni sites is increased, leads to significantly improved catalytic efficiencies which approximate those of the parent derivative 2 and [G0]-Ni4 (4). Preliminary membrane catalysis experiments with [G0]-Ni4 (4) and [G1]-Ni12 (5) show that 5 can be efficiently retained in a membrane reactor system. The X-ray crystal structure of the Ni(III) complex [NiCl2(C6H2{CH2NMe2}2-2,6-SiMe3-4)] (16), obtained from the reaction of 2 with CCl4, is also reported.

186 citations

Journal ArticleDOI
TL;DR: The removal of the bridging CO moiety has been observed in the H(red) to H(sred) transition and it is suggested that the oxidation state of the binuclear subcluster does not change in this transition, and a reduction of the [4Fe4S] cluster has been proposed.
Abstract: Hydrogenases catalyze the reversible oxidation of molecular hydrogen. The active site of the [FeFe] hydrogenases (H-cluster) contains a catalytically active binuclear subcluster ([2Fe]H) connected to a “cubane” [4Fe4S]H subcluster. Here we present an IR spectroelectrochemical study of the [FeFe] hydrogenase HydA1 isolated from the green alga Chlamydomonas reinhardtii. The enzyme shows IR bands similar to those observed for bacterial [FeFe] hydrogenases. They are assigned to the stretching vibrations of the CN− and CO ligands on both irons of the [2Fe]H subcluster. By following changes in frequencies of the IR bands during electrochemical titrations, two one-electron redox processes of the active enzyme could be distinguished. The reduction of the oxidized state (Hox) occurred at a midpoint potential of −400 mV vs NHE (Hox/Hred transition) and relates to a change of the formal oxidation state of the binuclear subcluster. A subsequent reduction (Hred/Hsred transition) was determined to have a midpoint poten...

129 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Abstract: We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

8,490 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.
Abstract: Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.

1,651 citations

Journal ArticleDOI
TL;DR: This review discusses the synthetic methodologies that are currently available for the preparation of platinum group metal complexes containing pincer ligands and especially emphasizes different applications that have been realized in materials science such as the development and engineering of sensors, switches, and catalysts.
Abstract: Since the first reports in the late 1970s on transition metal complexes contain- ing pincer-type ligands—named after the particular coordination mode of these ligands—these systems have at- tracted increasing interest owing to the unusual properties of the metal centers imparted by the pincer ligand. Typical- ly, such a ligand comprises an anionic aryl ring which is ortho,ortho-disubsti- tuted with heteroatom substituents, for example, CH2NR2 ,C H 2PR2 or CH2SR, which generally coordinate to the met- al center, and therefore support the MC s bond. This commonly results in a terdentate and meridional coordina- tion mode consisting of two metalla- cycles which share the MC bond. Detailed studies of the formation and the properties of a large variety of pincers containing platinum group metal complexes have provided direct access to both a fundamental under- standing of a variety of reactions in organometallic chemistry and to a range of new applications of these complexes. The discovery of alkane dehydrogenation catalysts, the mecha- nistic elucidation of fundamental transformations (for example, CC bond activation), the construction of the first metallodendrimers for sustain- able homogeneous catalysis, and the engineering of crystalline switches for materials processing represent only a few of the many highlights which have emanated from these numerous inves- tigations. This review discusses the synthetic methodologies that are cur- rently available for the preparation of platinum group metal complexes con- taining pincer ligands and especially emphasizes different applications that have been realized in materials science such as the development and engineer- ing of sensors, switches, and catalysts.

1,413 citations

Journal ArticleDOI
TL;DR: The study compares different catalysts in terms of the reaction mechanism and deactivation pathways and catalytic performance, as dehydrogenation for the production of light olefins has become extremely relevant.
Abstract: A study is conducted to demonstrate catalytic dehydrogenation of light alkanes on metals and metal oxides. The study provides a complete overview of the materials used to catalyze this reaction, as dehydrogenation for the production of light olefins has become extremely relevant. Relevant factors, such as the specific nature of the active sites, as well as the effect of support, promoters, and reaction feed on catalyst performance and lifetime, are discussed for each catalytic Material. The study compares different catalysts in terms of the reaction mechanism and deactivation pathways and catalytic performance. The duration of the dehydrogenation step depends on the heat content of the catalyst bed, which decreases rapidly due to the endothermic nature of the reaction. Part of the heat required for the reaction is introduced to the reactors by preheating the reaction feed, additional heat being provided by adjacent reactors that are regenerating the coked catalysts.

1,306 citations