scispace - formally typeset
Search or ask a question
Author

Eduardo Alves de Almeida

Bio: Eduardo Alves de Almeida is an academic researcher from Sao Paulo State University. The author has contributed to research in topics: Glutathione peroxidase & Lipid peroxidation. The author has an hindex of 30, co-authored 118 publications receiving 3173 citations. Previous affiliations of Eduardo Alves de Almeida include Universidade Federal de Santa Catarina & University of São Paulo.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast subjected to different stress conditions, including the exposure to different contaminants in the laboratory and in the field.
Abstract: Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.

246 citations

Journal ArticleDOI
TL;DR: This work addresses the importance of isotope labeling associated with mass spectrometry technique for biomolecule damage studies and provides the first evidence of the occurrence of 1,N(2)-epsilondGuo as a basal endogenous lesion and may be utilized to better assess the biological consequences of etheno DNA damage under normal and pathological conditions.
Abstract: Modification of cellular DNA upon exposure to reactive oxygen and nitrogen species is the likely initial event involved in the induction of the mutagenic and lethal effects of various oxidative stress agents. Evidence has been accumulated for the significant implication of singlet oxygen ( 1 O 2 ), generated as the result of UVA activation of endogenous photosensitizers as porphyrins and flavins. 7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxodGuo) has been shown to be the exclusive product of the reaction of 1 O 2 with the guanine moiety of cellular DNA, in contrast to the hydroxyl radical, which reacts almost indifferently with all the nucleobases and the sugar moiety of DNA. Furthermore 8-oxodGuo is also produced by other oxidants and can be used as an ubiquitous biomarker of DNA oxidation but can not be a specific marker of any particular species. The role of DNA etheno adducts in mutagenic and carcinogenic processes triggered by known occupational and environmental carcinogens has also been studied. Much interest in etheno adducts resulted from the detection of increased levels of 1,N6-etheno-2′-deoxyadenosine and 3,N4-etheno-2′-deoxycytidine in DNA from human, rat and mouse tissues under pathophysiological conditions associated with oxidative stress. A method involving on-line HPLC with electrospray tandem mass spectrometry detection has been developed for the analysis of 1,N2-etheno-2′-deoxyguanosine (1,N2-edGuo) in DNA. This methodology permits direct quantification of 20 fmol (7.4 adducts/108 dGuo) of the etheno adduct from approximately 350 μg of crude DNA hydrolysates. This method provides the first evidence of the occurrence of 1,N2-edGuo as a basal endogenous lesion and may be utilized to better assess the biological consequences of etheno DNA damage under normal and pathological conditions. This work addresses the importance of isotope labeling associated with mass spectrometry technique for biomolecule damage studies.

213 citations

Journal ArticleDOI
TL;DR: Digestive glands of the mangrove mussel Mytella guyanensis, collected at one non-polluted site and two polluted sites, were analysed for different antioxidant defenses, lipid peroxidation and DNA damage.

212 citations

Journal ArticleDOI
TL;DR: Positive correlations were observed between the enzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx) and malonaldehyde (MDA) levels after Fe and Cu exposure, indicating a protective role of PHGPx against lipid peroxidation, and suggesting the use of this enzyme as a new potential biomarker of toxicity associated with contaminant exposure in mussels.

164 citations

Journal ArticleDOI
TL;DR: The DNA and lipid oxidative damage observed after aerial exposure indicates that mussels face an oxidative challenge, and are able to counteract such an “insult” as values of lipid peroxidation and DNA damage returned to control values after 3 h re-submersion.

151 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Current knowledge and advances in the understanding of oxidative processes in biological systems are summarized and this knowledge is extended to specific applications in aquatic organisms because of their sensitivity to oxidative pollutants, their filtration capacity, and their potential for environmental toxicology studies.

1,549 citations

Journal ArticleDOI
TL;DR: This review focuses on melatonin metabolism which includes the synthetic rate‐limiting enzymes, synthetic sites, potential regulatory mechanisms, bioavailability in humans, mechanisms of breakdown and functions of its metabolites.
Abstract: Melatonin is a highly conserved molecule. Its presence can be traced back to ancient photosynthetic prokaryotes. A primitive and primary function of melatonin is that it acts as a receptor-independent free radical scavenger and a broad-spectrum antioxidant. The receptor-dependent functions of melatonin were subsequently acquired during evolution. In the current review, we focus on melatonin metabolism which includes the synthetic rate-limiting enzymes, synthetic sites, potential regulatory mechanisms, bioavailability in humans, mechanisms of breakdown and functions of its metabolites. Recent evidence indicates that the original melatonin metabolite may be N 1 -acetyl-N 2 -formyl-5-methoxykynuramine (AFMK) rather than its commonly measured urinary excretory product 6-hydroxymelatonin sulfate. Numerous pathways for AFMK formation have been identified both in vitro and in vivo. These include enzymatic and pseudo-enzymatic pathways, interactions with reactive oxygen species (ROS)/reactive nitrogen species (RNS) and with ultraviolet irradiation. AFMK is present in mammals including humans, and is the only detectable melatonin metabolite in unicellular organisms and metazoans. 6-Hydroxymelatonin sulfate has not been observed in these low evolutionary-ranked organisms. This implies that AFMK evolved earlier in evolution than 6-hydroxymelatonin sulfate as a melatonin metabolite. Via the AFMK pathway, a single melatonin molecule is reported to scavenge up to 10 ROS/RNS. That the free radical scavenging capacity of melatonin extends to its secondary, tertiary and quaternary metabolites is now documented. It appears that melatonin's interaction with ROS/RNS is a prolonged process that involves many of its derivatives. The process by which melatonin and its metabolites successively scavenge ROS/RNS is referred as the free radical scavenging cascade. This cascade reaction is a novel property of melatonin and explains how it differs from other conventional antioxidants. This cascade reaction makes melatonin highly effective, even at low concentrations, in protecting organisms from oxidative stress. In accordance with its protective function, substantial amounts of melatonin are found in tissues and organs which are frequently exposed to the hostile environmental insults such as the gut and skin or organs which have high oxygen consumption such as the brain. In addition, melatonin production may be upregulated by low intensity stressors such as dietary restriction in rats and exercise in humans. Intensive oxidative stress results in a rapid drop of circulating melatonin levels. This melatonin decline is not related to its reduced synthesis but to its rapid consumption, i.e. circulating melatonin is rapidly metabolized by interaction with ROS/RNS induced by stress. Rapid melatonin consumption during elevated stress may serve as a protective mechanism of organisms in which melatonin is used as a first-line defensive molecule against oxidative damage. The oxidative status of organisms modifies melatonin metabolism. It has been reported that the higher the oxidative state, the more AFMK is produced. The ratio of AFMK and another melatonin metabolite, cyclic 3-hydroxymelatonin, may serve as an indicator of the level of oxidative stress in organisms.

1,454 citations

Journal ArticleDOI
TL;DR: Melatonin and its metabolite AMK constitute an efficient team of scavengers able of deactivating a wide variety of reactive oxygen species, under different conditions, and the presented results support the continuous protection exerted by melatonin, through the free radical scavenging cascade.
Abstract: The reactions of N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK) with •OH, •OOH, and •OOCCl3 radicals have been studied using the density functional theory. Three mechanisms of reaction have been considered: radical adduct formation (RAF), hydrogen transfer (HT), and single electron transfer (SET). Their relative importance for the free radical scavenging activity of AFMK and AMK has been assessed. It was found that AFMK and AMK react with •OH at diffusion-limited rates, regardless of the polarity of the environment, which supports their excellent •OH radical scavenging activity. Both compounds were found to be also very efficient for scavenging •OOCCl3, but rather ineffective for scavenging •OOH. Regarding their relative activity, it was found that AFMK systematically is a poorer scavenger than AMK and melatonin. In aqueous solution, AMK was found to react faster than melatonin with all the studied free radicals, while in nonpolar environments, the relative efficiency of AMK and melatonin as free radical scavengers depends on the radical with which they are reacting. Under such conditions, melatonin is predicted to be a better •OOH and •OOCCl3 scavenger than AMK, while AMK is predicted to be slightly better than melatonin for scavenging •OH. Accordingly it seems that melatonin and its metabolite AMK constitute an efficient team of scavengers able of deactivating a wide variety of reactive oxygen species, under different conditions. Thus, the presented results support the continuous protection exerted by melatonin, through the free radical scavenging cascade.

658 citations

Journal ArticleDOI
TL;DR: The results demonstrate that HepG2 cells exposed to 14–20 μg/ml ZnO nanoparticles for 12 h showed a decrease in cell viability and the mode of cell death induced by Zn O nanoparticles was apoptosis, and apoptosis was found to be independent of JNK and p38 pathways.
Abstract: The wide scale use of Zinc oxide (ZnO) nanoparticles in the world consumer market makes human beings more prone to the exposure to ZnO nanoparticles and its adverse effects. The liver, which is the primary organ of metabolism, might act as a major target organ for ZnO nanoparticles after they gain entry into the body through any of the possible routes. Therefore, the aim of the present study was to assess the apoptotic and genotoxic potential of ZnO nanoparticles in human liver cells (HepG2) and the underlying molecular mechanism of its cellular toxicity. The role of dissolution in the toxicity of ZnO nanoparticles was also investigated. Our results demonstrate that HepG2 cells exposed to 14–20 μg/ml ZnO nanoparticles for 12 h showed a decrease in cell viability and the mode of cell death induced by ZnO nanoparticles was apoptosis. They also induced DNA damage which was mediated by oxidative stress as evidenced by an increase in Fpg sensitive sites. Reactive oxygen species triggered a decrease in mitochondria membrane potential and an increase in the ratio of Bax/Bcl2 leading to mitochondria mediated pathway involved in apoptosis. In addition, ZnO nanoparticles activated JNK, p38 and induced p53Ser15 phosphorylation. However, apoptosis was found to be independent of JNK and p38 pathways. This study investigating the effects of ZnO nanoparticles in human liver cells has provided valuable insights into the mechanism of toxicity induced by ZnO nanoparticles.

639 citations

Journal ArticleDOI
TL;DR: Although the vast majority of studies proved the antioxidant capacity of melatonin and its derivatives, a few studies using cultured cells found that melatonin promoted the generation of ROS at pharmacological concentrations in several tumor and nontumor cells; thus, melatonin functioned as a conditional pro‐oxidant.
Abstract: Melatonin (N-acetyl-5-methoxytryptamine), an indoleamine produced in many organs including the pineal gland, was initially characterized as a hormone primarily involved in circadian regulation of physiological and neuroendocrine function. Subsequent studies found that melatonin and its metabolic derivatives possess strong free radical scavenging properties. These metabolites are potent antioxidants against both ROS (reactive oxygen species) and RNS (reactive nitrogen species). The mechanisms by which melatonin and its metabolites protect against free radicals and oxidative stress include direct scavenging of radicals and radical products, induction of the expression of antioxidant enzymes, reduction of the activation of pro-oxidant enzymes, and maintenance of mitochondrial homeostasis. In both in vitro and in vivo studies, melatonin has been shown to reduce oxidative damage to lipids, proteins and DNA under a very wide set of conditions where toxic derivatives of oxygen are known to be produced. Although the vast majority of studies proved the antioxidant capacity of melatonin and its derivatives, a few studies using cultured cells found that melatonin promoted the generation of ROS at pharmacological concentrations (μm to mm range) in several tumor and nontumor cells; thus, melatonin functioned as a conditional pro-oxidant. Mechanistically, melatonin may stimulate ROS production through its interaction with calmodulin. Also, melatonin may interact with mitochondrial complex III or mitochondrial transition pore to promote ROS production. Whether melatonin functions as a pro-oxidant under in vivo conditions is not well documented; thus, whether the reported in vitro pro-oxidant actions come into play in live organisms remains to be established.

624 citations