scispace - formally typeset
Search or ask a question
Author

Eduardo Blumwald

Bio: Eduardo Blumwald is an academic researcher from University of California, Davis. The author has contributed to research in topics: Drought tolerance & Antiporter. The author has an hindex of 75, co-authored 221 publications receiving 25041 citations. Previous affiliations of Eduardo Blumwald include University of California, Berkeley & McGill University.


Papers
More filters
Journal ArticleDOI
20 Aug 1999-Science
TL;DR: Overexpression of a vacuolar Na+/H+ antiport fromArabidopsis thaliana in Arabidopsis plants promotes sustained growth and development in soil watered with up to 200 millimolar sodium chloride, demonstrating the feasibility of engineering salt tolerance in plants.
Abstract: Agricultural productivity is severely affected by soil salinity. One possible mechanism by which plants could survive salt stress is to compartmentalize sodium ions away from the cytosol. Overexpression of a vacuolar Na+/H+antiport from Arabidopsis thaliana in Arabidopsisplants promotes sustained growth and development in soil watered with up to 200 millimolar sodium chloride. This salinity tolerance was correlated with higher-than-normal levels of AtNHX1transcripts, protein, and vacuolar Na+/H+(sodium/proton) antiport activity. These results demonstrate the feasibility of engineering salt tolerance in plants.

1,882 citations

Journal ArticleDOI
TL;DR: ROS is beneficial to plants during abiotic stress enabling them to adjust their metabolism and mount a proper acclimation response, as long as cells maintain high enough energy reserves to detoxify ROS.
Abstract: Reactive oxygen species (ROS) play a key role in the acclimation process of plants to abiotic stress. They primarily function as signal transduction molecules that regulate different pathways during plant acclimation to stress, but are also toxic byproducts of stress metabolism. Because each subcellular compartment in plants contains its own set of ROS-producing and ROS-scavenging pathways, the steady-state level of ROS, as well as the redox state of each compartment, is different at any given time giving rise to a distinct signature of ROS levels at the different compartments of the cell. Here we review recent studies on the role of ROS in abiotic stress in plants, and propose that different abiotic stresses, such as drought, heat, salinity and high light, result in different ROS signatures that determine the specificity of the acclimation response and help tailor it to the exact stress the plant encounters. We further address the role of ROS in the acclimation of plants to stress combination as well as the role of ROS in mediating rapid systemic signaling during abiotic stress. We conclude that as long as cells maintain high enough energy reserves to detoxify ROS, ROS is beneficial to plants during abiotic stress enabling them to adjust their metabolism and mount a proper acclimation response.

1,462 citations

Journal ArticleDOI
TL;DR: This review will provide an update on recent studies focusing on the response of plants to a combination of different stresses, and address how different stress responses are integrated and how they impact plant growth and physiological traits.
Abstract: Contents 'Summary' 32 I. 'Introduction' 32 II. 'Effects of stress combination on growth, yield and physiological traits in plants and crops' 34 III. 'The complexity of stress response signaling during stress combination' 38 IV. 'Conclusions' 39 'Acknowledgements' 41 References 41 Summary Environmental stress conditions such as drought, heat, salinity, cold, or pathogen infection can have a devastating impact on plant growth and yield under field conditions. Nevertheless, the effects of these stresses on plants are typically being studied under controlled growth conditions in the laboratory. The field environment is very different from the controlled conditions used in laboratory studies, and often involves the simultaneous exposure of plants to more than one abiotic and/or biotic stress condition, such as a combination of drought and heat, drought and cold, salinity and heat, or any of the major abiotic stresses combined with pathogen infection. Recent studies have revealed that the response of plants to combinations of two or more stress conditions is unique and cannot be directly extrapolated from the response of plants to each of the different stresses applied individually. Moreover, the simultaneous occurrence of different stresses results in a high degree of complexity in plant responses, as the responses to the combined stresses are largely controlled by different, and sometimes opposing, signaling pathways that may interact and inhibit each other. In this review, we will provide an update on recent studies focusing on the response of plants to a combination of different stresses. In particular, we will address how different stress responses are integrated and how they impact plant growth and physiological traits.

1,282 citations

Journal ArticleDOI
TL;DR: The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance.

1,106 citations

Journal ArticleDOI
TL;DR: The results demonstrate that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated and the utility of such a modification in preserving the quality of the fruit.
Abstract: ++ antiport were able to grow, flower, and produce fruit in the presence of 200 mM sodium chloride. Although the leaves accumulated high sodium concentrations, the tomato fruit displayed very low sodium content. Contrary to the notion that multiple traits introduced by breeding into crop plants are needed to obtain salt-tolerant plants, the modification of a single trait significantly improved the salinity tolerance of this crop plant. These results demonstrate that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated. The accumulation of sodium in the leaves and not in the fruit demonstrates the utility of such a modification in preserving the quality of the fruit. RESEARCH ARTICLE Agricultural productivity is severely affected by soil salinity, and the damaging effects of salt accumulation in agricultural soils have influenced ancient and modern civilizations. Much research is aimed toward the breeding of crop cultivars with improved salt tolerance. One school of thought has concluded that salt tolerance will be achieved only after pyramiding several characteristics in a single genotype, whereas each one alone could not confer a significant increase in salt tolerance 1,2 . Arguably, salt tolerance is a complex trait, and the long list of salt stress-responsive genes seems to support this 3 . However, the overexpression of a single gene recently was shown to improve salt tolerance in Arabidopsis 4 . The detrimental effects of salt on plants are a consequence of both a water deficit resulting in osmotic stress and the effects of excess sodium ions on key biochemical processes. To tolerate high levels of salts, plants should be able to use ions for osmotic adjustment and to internally distribute these ions to keep sodium away from the cytosol. The presence of large, acidic-inside, membranebound vacuoles in plant cells allows the efficient compartmentation of sodium into the vacuole through the operation of vacuolar Na

1,105 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level and the role of the HKT gene family in Na(+) exclusion from leaves is increasing.
Abstract: The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na + or Cl − exclusion, and the tolerance of tissue to accumulated Na + or Cl − . Our understanding of the role of the HKT gene family in Na + exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na + accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.

9,966 citations

Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations

Journal ArticleDOI
TL;DR: Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation.
Abstract: Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. Osmotic stress activates several protein kinases including mitogen-activated kinases, which may mediate osmotic homeostasis and/or detoxification responses. A number of phospholipid systems are activated by osmotic stress, generating a diverse array of messenger molecules, some of which may function upstream of the osmotic stress-activated protein kinases. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.

5,328 citations

Journal ArticleDOI
01 Jun 2000
TL;DR: Evidence for plant stress signaling systems is summarized, some of which have components analogous to those that regulate osmotic stress responses of yeast, some that presumably function in intercellular coordination or regulation of effector genes in a cell-/tissue-specific context required for tolerance of plants.
Abstract: ▪ Abstract Plant responses to salinity stress are reviewed with emphasis on molecular mechanisms of signal transduction and on the physiological consequences of altered gene expression that affect biochemical reactions downstream of stress sensing. We make extensive use of comparisons with model organisms, halophytic plants, and yeast, which provide a paradigm for many responses to salinity exhibited by stress-sensitive plants. Among biochemical responses, we emphasize osmolyte biosynthesis and function, water flux control, and membrane transport of ions for maintenance and re-establishment of homeostasis. The advances in understanding the effectiveness of stress responses, and distinctions between pathology and adaptive advantage, are increasingly based on transgenic plant and mutant analyses, in particular the analysis of Arabidopsis mutants defective in elements of stress signal transduction pathways. We summarize evidence for plant stress signaling systems, some of which have components analogous to t...

4,596 citations