scispace - formally typeset
Search or ask a question
Author

Eduardo Figueiredo

Bio: Eduardo Figueiredo is an academic researcher from Universidade Federal de Minas Gerais. The author has contributed to research in topics: Software system & Software development. The author has an hindex of 28, co-authored 138 publications receiving 3201 citations. Previous affiliations of Eduardo Figueiredo include Pontifical Catholic University of Rio de Janeiro & Lancaster University.


Papers
More filters
Proceedings ArticleDOI
10 May 2008
TL;DR: This investigation focused upon a multi-perspective analysis of the evolving product lines in terms of modularity, change propagation, and feature dependency and identified a number of scenarios which positively or negatively affect the architecture stability of aspectual SPLs.
Abstract: Software product lines (SPLs) enable modular, large-scale reuse through a software architecture addressing multiple core and varying features. To reap the benefits of SPLs, their designs need to be stable. Design stability encompasses the sustenance of the product line's modularity properties in the presence of changes to both the core and varying features. It is usually assumed that aspect-oriented programming promotes better modularity and changeability of product lines than conventional variability mechanisms, such as conditional compilation. However, there is no empirical evidence on its efficacy to prolong design stability of SPLs through realistic development scenarios. This paper reports a quantitative study that evolves two SPLs to assess various design stability facets of their aspect-oriented implementations. Our investigation focused upon a multi-perspective analysis of the evolving product lines in terms of modularity, change propagation, and feature dependency. We have identified a number of scenarios which positively or negatively affect the architecture stability of aspectual SPLs.

357 citations

Proceedings ArticleDOI
14 Mar 2005
TL;DR: This paper presents a quantitative study that compares aspect-based and OO solutions for the 23 Gang-of-Four patterns and finds that most aspect-oriented solutions improve separation of pattern-related concerns, although only 4 aspect- oriented implementations have exhibited significant reuse.
Abstract: Design patterns offer flexible solutions to common problems in software development. Recent studies have shown that several design patterns involve crosscutting concerns. Unfortunately, object-oriented (OO) abstractions are often not able to modularize those crosscutting concerns, which in turn decrease the system reusability and maintainability. Hence, it is important verifying whether aspect-oriented approaches support improved modularization of crosscutting concerns relative to design patterns. Ideally, quantitative studies should be performed to compare OO and aspect-oriented implementations of classical patterns with respect to important software engineering attributes, such as coupling and cohesion. This paper presents a quantitative study that compares aspect-based and OO solutions for the 23 Gang-of-Four patterns. We have used stringent software engineering attributes as the assessment criteria. We have found that most aspect-oriented solutions improve separation of pattern-related concerns, although only 4 aspect-oriented implementations have exhibited significant reuse.

308 citations

Proceedings ArticleDOI
30 Jul 2007
TL;DR: A quantitative case study that evolves a real-life application to assess various facets of design stability of OO and AO implementations and includes an analysis of the application in terms of modularity, change propagation, concern interaction, identification of ripple-effects and adherence to well-known design principles.
Abstract: Although one of the main promises of aspect-oriented (AO) programming techniques is to promote better software changeability than objectoriented (OO) techniques, there is no empirical evidence on their efficacy to prolong design stability in realistic development scenarios. For instance, no investigation has been performed on the effectiveness of AO decompositions to sustain overall system modularity and minimize manifestation of ripple-effects in the presence of heterogeneous changes. This paper reports a quantitative case study that evolves a real-life application to assess various facets of design stability of OO and AO implementations. Our evaluation focused upon a number of system changes that are typically performed during software maintenance tasks. They ranged from successive re-factorings to more broadly-scoped software increments relative to both crosscutting and non-crosscutting concerns. The study included an analysis of the application in terms of modularity, change propagation, concern interaction, identification of ripple-effects and adherence to well-known design principles.

198 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: The findings support that tools provide redundant detection results for the same bad smell, and propose guidelines for developers of detection tools.
Abstract: Bad smells are symptoms that something may be wrong in the system design or code. There are many bad smells defined in the literature and detecting them is far from trivial. Therefore, several tools have been proposed to automate bad smell detection aiming to improve software maintainability. However, we lack a detailed study for summarizing and comparing the wide range of available tools. In this paper, we first present the findings of a systematic literature review of bad smell detection tools. As results of this review, we found 84 tools; 29 of them available online for download. Altogether, these tools aim to detect 61 bad smells by relying on at least six different detection techniques. They also target different programming languages, such as Java, C, C++, and C#. Following up the systematic review, we present a comparative study of four detection tools with respect to two bad smells: Large Class and Long Method. This study relies on two software systems and three metrics for comparison: agreement, recall, and precision. Our findings support that tools provide redundant detection results for the same bad smell. Based on quantitative and qualitative data, we also discuss relevant usability issues and propose guidelines for developers of detection tools.

140 citations


Cited by
More filters
Journal Article
TL;DR: AspectJ as mentioned in this paper is a simple and practical aspect-oriented extension to Java with just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns.
Abstract: Aspect] is a simple and practical aspect-oriented extension to Java With just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns. In AspectJ's dynamic join point model, join points are well-defined points in the execution of the program; pointcuts are collections of join points; advice are special method-like constructs that can be attached to pointcuts; and aspects are modular units of crosscutting implementation, comprising pointcuts, advice, and ordinary Java member declarations. AspectJ code is compiled into standard Java bytecode. Simple extensions to existing Java development environments make it possible to browse the crosscutting structure of aspects in the same kind of way as one browses the inheritance structure of classes. Several examples show that AspectJ is powerful, and that programs written using it are easy to understand.

2,947 citations

Book ChapterDOI
04 Jul 2009
TL;DR: This chapter reviews the state of the art on the treatment of non-functional requirements (hereafter, NFRs), while providing some prospects for future directions.
Abstract: Essentially a software system's utility is determined by both its functionality and its non-functional characteristics, such as usability, flexibility, performance, interoperability and security. Nonetheless, there has been a lop-sided emphasis in the functionality of the software, even though the functionality is not useful or usable without the necessary non-functional characteristics. In this chapter, we review the state of the art on the treatment of non-functional requirements (hereafter, NFRs), while providing some prospects for future directions.

2,443 citations

Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations