scispace - formally typeset
Search or ask a question
Author

Eduardo N. Dvorkin

Bio: Eduardo N. Dvorkin is an academic researcher from University of Buenos Aires. The author has contributed to research in topics: Finite element method & Mixed finite element method. The author has an hindex of 21, co-authored 81 publications receiving 4294 citations. Previous affiliations of Eduardo N. Dvorkin include Massachusetts Institute of Technology & Tenaris.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a general quadrilateral shell element for geometric and material nonlinear analysis is presented, which is formulated using three-dimensional continuum mechanics theory and it is applicable to the analysis of thin and thick shells.
Abstract: A new four‐node (non‐flat) general quadrilateral shell element for geometric and material non‐linear analysis is presented. The element is formulated using three‐dimensional continuum mechanics theory and it is applicable to the analysis of thin and thick shells. The formulation of the element and the solutions to various test and demonstrative example problems are presented and discussed.

1,187 citations

Journal ArticleDOI
TL;DR: In this article, a 4-node plate bending element for linear elastic analysis is presented, as a special case, from a general nonlinear continuum mechanics based four-node shell element formulation.
Abstract: This communication discusses a 4-node plate bending element for linear elastic analysis which is obtained, as a special case, from a general nonlinear continuum mechanics based 4-node shell element formulation. The formulation of the plate element is presented and the results of various example solutions are given that yield insight into the predictive capability of the plate (and shell) element.

1,000 citations

Journal ArticleDOI
TL;DR: This work describes the formulation of a 4-node shell element using a mixed interpolation of tensorial components, and presents a new 8-node element using this approach.
Abstract: We briefly discuss the requirements on general shell elements for linear and nonlinear analysis in practical engineering environments, and present our approach to meet these needs. We summarize and give further insight into our formulation of a 4-node shell element using a mixed interpolation of tensorial components, and present a new 8-node element using this approach. Specific attention is given to the general applicability of the elements and their efficient use in practice.

772 citations

Journal ArticleDOI
TL;DR: A new finite element formulation aimed at the solution of problems involving strain localization is presented, which incorporates displacement interpolated embedded localization lines and is shown to converge to an ‘exact solution’ when the mesh is refined.
Abstract: A new finite element formulation aimed at the solution of problems involving strain localization is presented. The proposed formulation incorporates displacement interpolated embedded localization lines. Results are shown to converge to an ‘exact solution’ when the mesh is refined and also to be quite insensitive to mesh distortions.

254 citations

Journal ArticleDOI
TL;DR: In this paper, the pre-and post-buckling/collapse response of general structures is calculated using static analysis and eigensolutions for linearized buckling response are discussed.

228 citations


Cited by
More filters
BookDOI
17 Aug 2012
TL;DR: De Borst et al. as mentioned in this paper present a condensed version of the original book with a focus on non-linear finite element technology, including nonlinear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity.
Abstract: Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist Rene de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature.

2,568 citations

Journal ArticleDOI
TL;DR: In this article, a general quadrilateral shell element for geometric and material nonlinear analysis is presented, which is formulated using three-dimensional continuum mechanics theory and it is applicable to the analysis of thin and thick shells.
Abstract: A new four‐node (non‐flat) general quadrilateral shell element for geometric and material non‐linear analysis is presented. The element is formulated using three‐dimensional continuum mechanics theory and it is applicable to the analysis of thin and thick shells. The formulation of the element and the solutions to various test and demonstrative example problems are presented and discussed.

1,187 citations

Journal ArticleDOI
TL;DR: The nonlocal continuum concept has emerged as an effective means for regularizing the boundary value problems with strain softening, capturing the size effects and avoiding spurious localization that gives rise to pathological mesh sensitivity in numerical computations as mentioned in this paper.
Abstract: Modeling of the evolution of distributed damage such as microcracking, void formation, and softening frictional slip necessitates strain-softening constitutive models. The nonlocal continuum concept has emerged as an effective means for regularizing the boundary value problems with strain softening, capturing the size effects and avoiding spurious localization that gives rise to pathological mesh sensitivity in numerical computations. A great variety of nonlocal models have appeared during the last two decades. This paper reviews the progress in the nonlocal models of integral type, and discusses their physical justifications, advantages, and numerical applications.

1,171 citations

Journal ArticleDOI
TL;DR: In this article, a 4-node plate bending element for linear elastic analysis is presented, as a special case, from a general nonlinear continuum mechanics based four-node shell element formulation.
Abstract: This communication discusses a 4-node plate bending element for linear elastic analysis which is obtained, as a special case, from a general nonlinear continuum mechanics based 4-node shell element formulation. The formulation of the plate element is presented and the results of various example solutions are given that yield insight into the predictive capability of the plate (and shell) element.

1,000 citations

Journal ArticleDOI
TL;DR: Theories and finite elements for multilayered structures have been reviewed in this article, where the authors present an extensive numerical evaluation of available results, along with assessment and benchmarking.
Abstract: This work is a sequel of a previous author’s article: “Theories and Finite Elements for Multilayered. Anisotropic, Composite Plates and Shell”, Archive of Computational Methods in Engineering Vol 9, no 2, 2002; in which a literature overview of available modelings for layered flat and curved structures was given. The two following topics, which were not addressed in the previous work, are detailed in this review: 1. derivation of governing equations and finite element matrices for some of the most relevant plate/shell theories; 2. to present an extensive numerical evaluations of available results, along with assessment and benchmarking. The article content has been divided into four parts. An introduction to this review content is given in Part I. A unified description of several modelings based on displacements and transverse stress assumptions ins given in Part II. The order of the expansion in the thickness directions has been taken as a free parameter. Two-dimensional modelings which include Zig-Zag effects, Interlaminar Continuity as well as Layer-Wise (LW), and Equivalent Single Layer (ESL) description have been addressed. Part III quotes governing equations and FE matrices which have been written in a unified manner by making an extensive use of arrays notations. Governing differential equations of double curved shells and finite element matrices of multilayered plates are considered. Principle of Virtual Displacement (PVD) and Reissner’s Mixed Variational Theorem (RMVT), have been employed as statements to drive variationally consistent conditions, e.g.C 0 -Requirements, on the assumed displacements and stransverse stress fields. The number of the nodes in the element has been taken as a free parameter. As a results both differential governing equations and finite element matrices have been written in terms of a few 3×3 fundamental nuclei which have 9 only terms each. A vast and detailed numerical investigation has been given in Part IV. Performances of available theories and finite elements have been compared by building about 40 tables and 16 figures. More than fifty available theories and finite elements have been compared to those developed in the framework of the unified notation discussed in Parts II and III. Closed form solutions and and finite element results related to bending and vibration of plates and shells have been addressed. Zig-zag effects and interlaminar continuity have been evaluated for a number of problems. Different possibilities to get transverse normal stresses have been compared. LW results have been systematically compared to ESL ones. Detailed evaluations of transverse normal stress effects are given. Exhaustive assessment has been conducted in the Tables 28–39 which compare more than 40 models to evaluate local and global response of layered structures. A final Meyer-Piening problem is used to asses two-dimensional modelings vs local effects description.

951 citations