scispace - formally typeset
Search or ask a question
Author

Eduardo Schiffrin

Other affiliations: University of Paris
Bio: Eduardo Schiffrin is an academic researcher from Nestlé. The author has contributed to research in topics: Immune system & Probiotic. The author has an hindex of 42, co-authored 107 publications receiving 7627 citations. Previous affiliations of Eduardo Schiffrin include University of Paris.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that intestinally derived bacterial components are transported to the lactating breast within mononuclear cells, which programs the neonatal immune system to recognize specific bacterial molecular patterns and to respond appropriately to pathogens and commensal organisms.
Abstract: OBJECTIVE. We examined the presence of a natural bacterial inoculum in breast milk and its intracellular transport from the maternal intestine to the breast through the circulation. METHODS. Breast milk and peripheral blood were collected aseptically from healthy donors at various times after delivery, and the presence of viable bacteria was determined through plating. Temporal temperature gradient gel electrophoresis was used to examine the bacterial ribosomal DNA content in milk cells, maternal peripheral blood mononuclear cells, and feces and in corresponding infant feces. Blood from nongravid nonlactating women served as control samples. Bacterial translocation to extraintestinal tissues was also evaluated in virgin, pregnant, and lactating mice. RESULTS. Breast milk contained a low total concentration of microbes of CONCLUSIONS. Bacterial translocation is a unique physiologic event, which is increased during pregnancy and lactation in rodents. Human breast milk cells contain a limited number of viable bacteria but a range of bacterial DNA signatures, as also found in maternal peripheral blood mononuclear cells. Those peripheral blood mononuclear cells showed greater biodiversity than did peripheral blood mononuclear cells from control women. Taken together, our results suggest that intestinally derived bacterial components are transported to the lactating breast within mononuclear cells. We speculate that this programs the neonatal immune system to recognize specific bacterial molecular patterns and to respond appropriately to pathogens and commensal organisms.

577 citations

Journal ArticleDOI
TL;DR: Nonspecific, anti-infective mechanisms of defense can be enhanced by the ingestion of specific lactic acid bacteria strains that can be used as nutritional supplements to improve the immune function of particular age groups, i.e., the neonate or the elderly.

573 citations

Journal ArticleDOI
01 Jul 2000-Gut
TL;DR: The hypothesis that bacterial signalling at the mucosal surface is dependent on a network of cellular interactions is strengthened by co-cultivating enterocyte-like CaCO-2 cells with human blood leucocytes to address the question of whether non-pathogenic bacteria modify the immune response of the intestinal epithelium.
Abstract: Background and aim—Intestinal epithelial cells (IEC) are thought to participate in the mucosal defence against bacteria and in the regulation of mucosal tissue homeostasis. Reactivity of IEC to bacterial signals may depend on interactions with immunocompetent cells. To address the question of whether non-pathogenic bacteria modify the immune response of the intestinal epithelium, we co-cultivated enterocyte-like CaCO-2 cells with human blood leucocytes in separate compartments of transwell cultures. Methods—CaCO-2/PBMC co-cultures were stimulated with non-pathogenic bacteria and enteropathogenic Escherichia coli. Expression of tumour necrosis factor alpha (TNF-AE), interleukin (IL)-1‚, IL-8, monocyte chemoattracting protein 1 (MCP-1), and IL-10 was studied by enzyme linked immunosorbent assays (cytokine secretion) and by semiquantitative reverse transcription-polymerase chain reaction. Results—Challenge of CaCO-2 cells with non-pathogenic E coli and Lactobacillus sakei induced expression of IL-8, MCP-1, IL-1‚, and TNF-AE mRNA in the presence of underlying leucocytes. Leucocyte sensitised CaCO-2 cells produced TNF-AE and IL-1‚ whereas IL-10 was exclusively secreted by human peripheral blood mononuclear cells. CaCO-2 cells alone remained hyporesponsive to the bacterial challenge. Lactobacillus johnsonii, an intestinal isolate, showed reduced potential to induce proinflammatory cytokines but increased transforming growth factor beta mR˝A in leucocyte sensitised CaCO-2 cells. TNF-AE was identified as one of the early mediators involved in cellular cross talk. In the presence of leucocytes, discriminative activation of CaCO-2 cells was observed between enteropathogenic E coli and non-pathogenic bacteria. Conclusion—The diVerential recognition of non-pathogenic bacteria by CaCO-2 cells required the presence of underlying leucocytes. These results strengthen the hypothesis that bacterial signalling at the mucosal surface is dependent on a network of cellular interactions. (Gut 2000;47:79‐87)

456 citations

Journal ArticleDOI
TL;DR: Bacterial adhesion to enterocytes, fecal colonization, or both seem to be valuable selection criteria for immunomodulation, and antiinfective mechanisms of defense can be enhanced after ingestion of specific lactic acid bacteria strains.

376 citations

Journal ArticleDOI
TL;DR: The existence of natural soluble forms of TLR2 (sTLR2), which is demonstrated to be capable of modulating cell activation, is demonstrated and may lead to new therapeutics for the prevention and/or treatment of severe infectious diseases.
Abstract: Dysregulation of the initial, innate immune response to bacterial infection may lead to septic shock and death. Toll-like receptors (TLRs) play a crucial role in this innate immune response, and yet the regulatory mechanisms controlling microbial-induced TLR triggering are still to be fully understood. We have therefore sought specific regulatory mechanisms that may modulate TLR signaling. In this study, we tested for the possible existence of a functionally active soluble form of TLR2. We demonstrated the existence of natural soluble forms of TLR2 (sTLR2), which we show to be capable of modulating cell activation. We found that blood monocytes released sTLR2 constitutively and that the kinetics of sTLR2 release increased upon cell activation. Analysis of cells expressing the human TLR2 cDNA or its c-myc-tagged version indicated that sTLR2 resulted from the posttranslational modification of the TLR2 protein in an intracellular compartment. Moreover, an intracellular pool of sTLR2 is maintained. sTLR2 was found naturally expressed in breast milk and plasma. Milk sTLR2 levels mirrored those of the TLR coreceptor soluble CD14. Depletion of sTLR2 from serum resulted in an increased cellular response to bacterial lipopeptide. Notably, serum sTLR2 was lower in tuberculosis patients. Coimmunoprecipitation experiments and computational molecular docking studies showed an interaction between sTLR2 and soluble CD14 in plasma and milk. These findings suggest the existence of a novel and specific innate immune mechanism regulating microbial-induced TLR triggering, and may lead to new therapeutics for the prevention and/or treatment of severe infectious diseases.

349 citations


Cited by
More filters
Journal ArticleDOI
12 May 2011-Nature
TL;DR: Three robust clusters (referred to as enterotypes hereafter) are identified that are not nation or continent specific and confirmed in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous.
Abstract: Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.

5,566 citations

Journal ArticleDOI
TL;DR: The results suggest that counterbalancing dysbiosis using F. prausnitzii as a probiotic is a promising strategy in CD treatment and exhibits anti-inflammatory effects on cellular and TNBS colitis models, partly due to secreted metabolites able to block NF-κB activation and IL-8 production.
Abstract: A decrease in the abundance and biodiversity of intestinal bacteria within the dominant phylum Firmicutes has been observed repeatedly in Crohn disease (CD) patients. In this study, we determined the composition of the mucosa-associated microbiota of CD patients at the time of surgical resection and 6 months later using FISH analysis. We found that a reduction of a major member of Firmicutes, Faecalibacterium prausnitzii, is associated with a higher risk of postoperative recurrence of ileal CD. A lower proportion of F. prausnitzii on resected ileal Crohn mucosa also was associated with endoscopic recurrence at 6 months. To evaluate the immunomodulatory properties of F. prausnitzii we analyzed the anti-inflammatory effects of F. prausnitzii in both in vitro (cellular models) and in vivo [2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced] colitis in mice. In Caco-2 cells transfected with a reporter gene for NF-kappaB activity, F. prausnitzii had no effect on IL-1beta-induced NF-kappaB activity, whereas the supernatant abolished it. In vitro peripheral blood mononuclear cell stimulation by F. prausnitzii led to significantly lower IL-12 and IFN-gamma production levels and higher secretion of IL-10. Oral administration of either live F. prausnitzii or its supernatant markedly reduced the severity of TNBS colitis and tended to correct the dysbiosis associated with TNBS colitis, as demonstrated by real-time quantitative PCR (qPCR) analysis. F. prausnitzii exhibits anti-inflammatory effects on cellular and TNBS colitis models, partly due to secreted metabolites able to block NF-kappaB activation and IL-8 production. These results suggest that counterbalancing dysbiosis using F. prausnitzii as a probiotic is a promising strategy in CD treatment.

3,653 citations

Journal ArticleDOI
27 Mar 2014-Cell
TL;DR: In high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses.

3,257 citations

Journal ArticleDOI
TL;DR: Gut flora might be an essential factor in certain pathological disorders, including multisystem organ failure, colon cancer, and inflammatory bowel diseases, and Probiotics and prebiotics are known to have a role in prevention or treatment of some diseases.

3,184 citations

Journal ArticleDOI
09 Aug 2012-Nature
TL;DR: The data support a relationship between diet, microbiota and health status, and indicate a role for diet-driven microbiota alterations in varying rates of health decline upon ageing.
Abstract: Alterations in intestinal microbiota composition are associated with several chronic conditions, including obesity and inflammatory diseases. The microbiota of older people displays greater inter-individual variation than that of younger adults. Here we show that the faecal microbiota composition from 178 elderly subjects formed groups, correlating with residence location in the community, day-hospital, rehabilitation or in long-term residential care. However, clustering of subjects by diet separated them by the same residence location and microbiota groupings. The separation of microbiota composition significantly correlated with measures of frailty, co-morbidity, nutritional status, markers of inflammation and with metabolites in faecal water. The individual microbiota of people in long-stay care was significantly less diverse than that of community dwellers. Loss of community-associated microbiota correlated with increased frailty. Collectively, the data support a relationship between diet, microbiota and health status, and indicate a role for diet-driven microbiota alterations in varying rates of health decline upon ageing.

2,622 citations