scispace - formally typeset
Search or ask a question
Author

Eduardo V. Castro

Bio: Eduardo V. Castro is an academic researcher from University of Porto. The author has contributed to research in topics: Bilayer graphene & Graphene. The author has an hindex of 23, co-authored 81 publications receiving 4683 citations. Previous affiliations of Eduardo V. Castro include Boston University & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias and can be changed from zero to midinfrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2.
Abstract: We demonstrate that the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias. From the magnetotransport data (Shubnikov-de Haas measurements of the cyclotron mass), and using a tight-binding model, we extract the value of the gap as a function of the electronic density. We show that the gap can be changed from zero to midinfrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2. The opening of a gap is clearly seen in the quantum Hall regime.

1,557 citations

Journal Article
TL;DR: In this paper, the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias, and the gap can be changed from zero to mid-infrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2.
Abstract: We demonstrate that the electronic gap of a graphene bilayer can be controlled externally by applying a gate bias. From the magnetotransport data (Shubnikov-de Haas measurements of the cyclotron mass), and using a tight-binding model, we extract the value of the gap as a function of the electronic density. We show that the gap can be changed from zero to midinfrared energies by using fields of less, approximately < 1 V/nm, below the electric breakdown of SiO2. The opening of a gap is clearly seen in the quantum Hall regime.

1,365 citations

Journal ArticleDOI
TL;DR: The temperature dependence of the mobility in suspended graphene samples is investigated and flexural phonons become the leading scattering mechanism at temperature T≳10 K, and the resistivity increases quadratically with T.
Abstract: The temperature dependence of the mobility in suspended graphene samples is investigated. In clean samples, flexural phonons become the leading scattering mechanism at temperature $T\ensuremath{\gtrsim}10\text{ }\text{ }\mathrm{K}$, and the resistivity increases quadratically with $T$. Flexural phonons limit the intrinsic mobility down to a few ${\mathrm{m}}^{2}/\mathrm{V}\text{ }\mathrm{s}$ at room $T$. Their effect can be eliminated by applying strain or placing graphene on a substrate.

363 citations

Journal ArticleDOI
TL;DR: Analysis of experimental results regarding the electrical noise and cyclotron resonance suggests that the tight-binding approximation can be seen as a good starting point for understanding the electronic properties of graphene bilayer.
Abstract: We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system—a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron–hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and γ4 (inter-layer), and the on-site energy Δ.

258 citations

Journal ArticleDOI
TL;DR: In this article, the existence of a ferromagnetic phase is discussed with respect to both carrier density and temperature, and it is shown that the transition is first-order, lowering the value of U relatively to the usual Stoner criterion.
Abstract: We compute the phase diagram of a biased graphene bilayer. The existence of a ferromagnetic phase is discussed with respect to both carrier density and temperature. We find that the ferromagnetic transition is first-order, lowering the value of U relatively to the usual Stoner criterion. We show that in the ferromagnetic phase the two planes have unequal magnetization and that the electronic density is holelike in one plane and electronlike in the other.

122 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.

20,824 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Abstract: Graphene devices on standard SiO(2) substrates are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene. Although suspending the graphene above the substrate leads to a substantial improvement in device quality, this geometry imposes severe limitations on device architecture and functionality. There is a growing need, therefore, to identify dielectrics that allow a substrate-supported geometry while retaining the quality achieved with a suspended sample. Hexagonal boron nitride (h-BN) is an appealing substrate, because it has an atomically smooth surface that is relatively free of dangling bonds and charge traps. It also has a lattice constant similar to that of graphite, and has large optical phonon modes and a large electrical bandgap. Here we report the fabrication and characterization of high-quality exfoliated mono- and bilayer graphene devices on single-crystal h-BN substrates, by using a mechanical transfer process. Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2). These devices also show reduced roughness, intrinsic doping and chemical reactivity. The ability to assemble crystalline layered materials in a controlled way permits the fabrication of graphene devices on other promising dielectrics and allows for the realization of more complex graphene heterostructures.

6,261 citations