scispace - formally typeset
Search or ask a question
Author

Edward Curry

Other affiliations: St Thomas' Hospital
Bio: Edward Curry is an academic researcher from Imperial College London. The author has contributed to research in topics: DNA methylation & Chromatin. The author has an hindex of 16, co-authored 34 publications receiving 1832 citations. Previous affiliations of Edward Curry include St Thomas' Hospital.

Papers
More filters
Journal ArticleDOI
Ann-Marie Patch1, Ann-Marie Patch2, Elizabeth L. Christie3, Dariush Etemadmoghadam3, Dariush Etemadmoghadam4, Dale W. Garsed3, Joshy George, Sian Fereday3, Katia Nones1, Katia Nones2, Prue A. Cowin3, Kathryn Alsop3, Peter Bailey2, Peter Bailey5, Karin S. Kassahn2, Karin S. Kassahn6, Felicity Newell2, Michael C.J. Quinn1, Michael C.J. Quinn2, Stephen H. Kazakoff2, Stephen H. Kazakoff1, Kelly Quek2, Charlotte Wilhelm-Benartzi7, Edward Curry7, Huei San Leong3, Anne Hamilton8, Anne Hamilton4, Anne Hamilton3, Linda Mileshkin3, George Au-Yeung3, Catherine Kennedy9, Jillian Hung9, Yoke Eng Chiew9, Paul R. Harnett9, Michael Friedlander10, Michael C. J. Quinn2, Jan Pyman8, Stephen Cordner, Patricia C. M. O’Brien, Jodie Leditschke, Greg Young, Kate Strachan, Paul Waring4, Walid J Azar3, Chris Mitchell3, Nadia Traficante3, Joy Hendley3, Heather Thorne3, Mark Shackleton3, David Miller2, Gisela Mir Arnau3, Richard W. Tothill3, Timothy P. Holloway3, Timothy Semple3, Ivon Harliwong2, Craig Nourse2, Ehsan Nourbakhsh2, Suzanne Manning2, Senel Idrisoglu2, Timothy J. C. Bruxner2, Angelika N. Christ2, Barsha Poudel2, Oliver Holmes2, Oliver Holmes1, Matthew J. Anderson2, Conrad Leonard1, Conrad Leonard2, Andrew Lonie11, Nathan E. Hall12, Scott Wood2, Scott Wood1, Darrin Taylor2, Qinying Xu2, Qinying Xu1, J. Lynn Fink2, Nick Waddell2, Ronny Drapkin13, Euan A. Stronach7, Hani Gabra7, Robert S. Brown7, A. Jewell14, Shivashankar H. Nagaraj2, Emma Markham2, Peter Wilson2, Jason Ellul3, Orla McNally9, Maria A. Doyle3, Ravikiran Vedururu3, Collin Stewart15, Ernst Lengyel14, John V. Pearson1, John V. Pearson2, Nicola Waddell1, Nicola Waddell2, Anna deFazio9, Sean M. Grimmond5, Sean M. Grimmond2, David D.L. Bowtell3, David D.L. Bowtell4, David D.L. Bowtell7 
28 May 2015-Nature
TL;DR: It is shown that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance.
Abstract: Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.

1,195 citations

Journal ArticleDOI
TL;DR: Poised epigenetic states in tumour cells may drive multistep epigenetic fixation of gene expression during the acquisition of drug resistance, which has implications for clinical strategies to prevent the emergence ofdrug resistance.
Abstract: Epigenetic events, which are somatically inherited through cell division, are potential drivers of acquired drug resistance in cancer. The high rate of epigenetic change in tumours generates diversity in gene expression patterns that can rapidly evolve through drug selection during treatment, leading to the development of acquired resistance. This will potentially confound stratified chemotherapy decisions that are solely based on mutation biomarkers. Poised epigenetic states in tumour cells may drive multistep epigenetic fixation of gene expression during the acquisition of drug resistance, which has implications for clinical strategies to prevent the emergence of drug resistance.

259 citations

Journal ArticleDOI
TL;DR: Using machine learning, a radiomic-based small set of descriptors are developed to predict ovarian cancer patient survival based on CT scans acquired pre-operatively in 364 patients, named RPV.
Abstract: The five-year survival rate of epithelial ovarian cancer (EOC) is approximately 35-40% despite maximal treatment efforts, highlighting a need for stratification biomarkers for personalized treatment. Here we extract 657 quantitative mathematical descriptors from the preoperative CT images of 364 EOC patients at their initial presentation. Using machine learning, we derive a non-invasive summary-statistic of the primary ovarian tumor based on 4 descriptors, which we name "Radiomic Prognostic Vector" (RPV). RPV reliably identifies the 5% of patients with median overall survival less than 2 years, significantly improves established prognostic methods, and is validated in two independent, multi-center cohorts. Furthermore, genetic, transcriptomic and proteomic analysis from two independent datasets elucidate that stromal phenotype and DNA damage response pathways are activated in RPV-stratified tumors. RPV and its associated analysis platform could be exploited to guide personalized therapy of EOC and is potentially transferrable to other cancer types.

117 citations

Journal ArticleDOI
24 Sep 2015-Oncogene
TL;DR: It is concluded that, through the post-transcriptional regulation of genes such as mTOR within cancer pathways, LARP1 contributes to cancer progression.
Abstract: RNA-binding proteins (RBPs) bind to and post-transcriptionally regulate the stability of mRNAs. La-related protein 1 (LARP1) is a conserved RBP that interacts with poly-A-binding protein and is known to regulate 5′-terminal oligopyrimidine tract (TOP) mRNA translation. Here, we show that LARP1 is complexed to 3000 mRNAs enriched for cancer pathways. A prominent member of the LARP1 interactome is mTOR whose mRNA transcript is stabilized by LARP1. At a functional level, we show that LARP1 promotes cell migration, invasion, anchorage-independent growth and in vivo tumorigenesis. Furthermore, we show that LARP1 expression is elevated in epithelial cancers such as cervical and non-small cell lung cancers, where its expression correlates with disease progression and adverse prognosis, respectively. We therefore conclude that, through the post-transcriptional regulation of genes such as mTOR within cancer pathways, LARP1 contributes to cancer progression.

114 citations

Journal ArticleDOI
TL;DR: It is concluded that epigenome-wide hypomethylation of DNA from pre-diagnostic blood samples may be predictive of breast cancer risk and may thus be useful as a clinical biomarker.
Abstract: Interest in the potential of DNA methylation in peripheral blood as a biomarker of cancer risk is increasing. We aimed to assess whether epigenome-wide DNA methylation measured in peripheral blood samples obtained before onset of the disease is associated with increased risk of breast cancer. We report on three independent prospective nested case-control studies from the European Prospective Investigation into Cancer and Nutrition (EPIC-Italy; n = 162 matched case-control pairs), the Norwegian Women and Cancer study (NOWAC; n = 168 matched pairs), and the Breakthrough Generations Study (BGS; n = 548 matched pairs). We used the Illumina 450k array to measure methylation in the EPIC and NOWAC cohorts. Whole-genome bisulphite sequencing (WGBS) was performed on the BGS cohort using pooled DNA samples, combined to reach 50× coverage across ~16 million CpG sites in the genome including 450k array CpG sites. Mean β values over all probes were calculated as a measurement for epigenome-wide methylation. In EPIC, we found that high epigenome-wide methylation was associated with lower risk of breast cancer (odds ratio (OR) per 1 SD = 0.61, 95 % confidence interval (CI) 0.47–0.80; −0.2 % average difference in epigenome-wide methylation for cases and controls). Specifically, this was observed in gene bodies (OR = 0.51, 95 % CI 0.38–0.69) but not in gene promoters (OR = 0.92, 95 % CI 0.64–1.32). The association was not replicated in NOWAC (OR = 1.03 95 % CI 0.81–1.30). The reasons for heterogeneity across studies are unclear. However, data from the BGS cohort was consistent with epigenome-wide hypomethylation in breast cancer cases across the overlapping 450k probe sites (difference in average epigenome-wide methylation in case and control DNA pools = −0.2 %). We conclude that epigenome-wide hypomethylation of DNA from pre-diagnostic blood samples may be predictive of breast cancer risk and may thus be useful as a clinical biomarker.

100 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
Peter Bailey1, David K. Chang2, Katia Nones3, Katia Nones1, Amber L. Johns4, Ann-Marie Patch3, Ann-Marie Patch1, Marie-Claude Gingras5, David Miller4, David Miller1, Angelika N. Christ1, Timothy J. C. Bruxner1, Michael C.J. Quinn1, Michael C.J. Quinn3, Craig Nourse2, Craig Nourse1, Murtaugh Lc6, Ivon Harliwong1, Senel Idrisoglu1, Suzanne Manning1, Ehsan Nourbakhsh1, Shivangi Wani1, Shivangi Wani3, J. Lynn Fink1, Oliver Holmes3, Oliver Holmes1, Chin4, Matthew J. Anderson1, Stephen H. Kazakoff1, Stephen H. Kazakoff3, Conrad Leonard3, Conrad Leonard1, Felicity Newell1, Nicola Waddell1, Scott Wood3, Scott Wood1, Qinying Xu1, Qinying Xu3, Peter J. Wilson1, Nicole Cloonan1, Nicole Cloonan3, Karin S. Kassahn7, Karin S. Kassahn8, Karin S. Kassahn1, Darrin Taylor1, Kelly Quek1, Alan J. Robertson1, Lorena Pantano9, Laura Mincarelli2, Luis Navarro Sanchez2, Lisa Evers2, Jianmin Wu4, Mark Pinese4, Mark J. Cowley4, Jones4, Jones2, Emily K. Colvin4, Adnan Nagrial4, Emily S. Humphrey4, Lorraine A. Chantrill10, Lorraine A. Chantrill4, Amanda Mawson4, Jeremy L. Humphris4, Angela Chou11, Angela Chou4, Marina Pajic4, Marina Pajic12, Christopher J. Scarlett4, Christopher J. Scarlett13, Andreia V. Pinho4, Marc Giry-Laterriere4, Ilse Rooman4, Jaswinder S. Samra14, James G. Kench4, James G. Kench15, James G. Kench16, Jessica A. Lovell4, Neil D. Merrett12, Christopher W. Toon4, Krishna Epari17, Nam Q. Nguyen18, Andrew Barbour19, Nikolajs Zeps20, Kim Moran-Jones2, Nigel B. Jamieson2, Janet Graham2, Janet Graham21, Fraser Duthie22, Karin A. Oien4, Karin A. Oien22, Hair J22, Robert Grützmann23, Anirban Maitra24, Christine A. Iacobuzio-Donahue25, Christopher L. Wolfgang26, Richard A. Morgan26, Rita T. Lawlor, Corbo, Claudio Bassi, Borislav Rusev, Paola Capelli27, Roberto Salvia, Giampaolo Tortora, Debabrata Mukhopadhyay28, Gloria M. Petersen28, Munzy Dm5, William E. Fisher5, Saadia A. Karim, Eshleman26, Ralph H. Hruban26, Christian Pilarsky23, Jennifer P. Morton, Owen J. Sansom2, Aldo Scarpa27, Elizabeth A. Musgrove2, Ulla-Maja Bailey2, Oliver Hofmann9, Oliver Hofmann2, R. L. Sutherland4, David A. Wheeler5, Anthony J. Gill4, Anthony J. Gill15, Richard A. Gibbs5, John V. Pearson1, John V. Pearson3, Andrew V. Biankin, Sean M. Grimmond1, Sean M. Grimmond2, Sean M. Grimmond29 
03 Mar 2016-Nature
TL;DR: Detailed genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing.
Abstract: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

2,443 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software and could be excellently reproduced.
Abstract: Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue.

1,563 citations

Journal ArticleDOI
13 Nov 2019-Nature
TL;DR: A reductionist approach is taken to define and separate the key determinants of drug resistance, which include tumour burden and growth kinetics; tumour heterogeneity; physical barriers; the immune system and the microenvironment; undruggable cancer drivers; and the many consequences of applying therapeutic pressures.
Abstract: The problem of resistance to therapy in cancer is multifaceted. Here we take a reductionist approach to define and separate the key determinants of drug resistance, which include tumour burden and growth kinetics; tumour heterogeneity; physical barriers; the immune system and the microenvironment; undruggable cancer drivers; and the many consequences of applying therapeutic pressures. We propose four general solutions to drug resistance that are based on earlier detection of tumours permitting cancer interception; adaptive monitoring during therapy; the addition of novel drugs and improved pharmacological principles that result in deeper responses; and the identification of cancer cell dependencies by high-throughput synthetic lethality screens, integration of clinico-genomic data and computational modelling. These different approaches could eventually be synthesized for each tumour at any decision point and used to inform the choice of therapy. A review of drug resistance in cancer analyses each biological determinant of resistance separately and discusses existing and new therapeutic strategies to combat the problem as a whole.

1,127 citations