scispace - formally typeset
Search or ask a question
Author

Edward E. Graves

Bio: Edward E. Graves is an academic researcher from Stanford University. The author has contributed to research in topics: Radiation therapy & Standardized uptake value. The author has an hindex of 43, co-authored 158 publications receiving 6780 citations. Previous affiliations of Edward E. Graves include Harvard University & University of California, San Francisco.


Papers
More filters
Journal ArticleDOI
TL;DR: A screen identifies a drug that specifically kills glycolysis-dependent cancer cells by inhibiting glucose uptake and identifies a class of compounds, the 3-series, exemplified by STF-31, which selectively kills RCCs by specifically targeting glucose uptake through GLUT1 and exploiting the unique dependence of these cells onGLUT1 for survival.
Abstract: Identifying new targeted therapies that kill tumor cells while sparing normal tissue is a major challenge of cancer research. Using a high-throughput chemical synthetic lethal screen, we sought to identify compounds that exploit the loss of the von Hippel–Lindau (VHL) tumor suppressor gene, which occurs in about 80% of renal cell carcinomas (RCCs). RCCs, like many other cancers, are dependent on aerobic glycolysis for ATP production, a phenomenon known as the Warburg effect. The dependence of RCCs on glycolysis is in part a result of induction of glucose transporter 1 (GLUT1). Here, we report the identification of a class of compounds, the 3-series, exemplified by STF-31, which selectively kills RCCs by specifically targeting glucose uptake through GLUT1 and exploiting the unique dependence of these cells on GLUT1 for survival. Treatment with these agents inhibits the growth of RCCs by binding GLUT1 directly and impeding glucose uptake in vivo without toxicity to normal tissue. Activity of STF-31 in these experimental renal tumors can be monitored by [18F]fluorodeoxyglucose uptake by micro–positron emission tomography imaging, and therefore, these agents may be readily tested clinically in human tumors. Our results show that the Warburg effect confers distinct characteristics on tumor cells that can be selectively targeted for therapy.

443 citations

Journal ArticleDOI
TL;DR: It is expected that the large dataset collected can enable superior imaging of molecular probes in vivo and improve quantification of fluorescence signatures.
Abstract: Most current imagingsystems developed for tomographic investigations of intact tissues using diffuse photons suffer from a limited number of sources and detectors. In this paper we describe the construction and evaluation of a large dataset, low noise tomographic system for fluorescenceimaging in small animals. The system consists of a parallel plate-imaging chamber and a lens coupled CCD camera, which enables conventional planar imaging as well as fluorescencetomography. The planar imaging data are used to guide the acquisition of a Fluorescence Molecular Tomography (FMT) dataset containing more than 10 6 measurements, and to superimpose anatomical features with tomographic results for improved visual representation. Experimental measurements exhibited good agreement with the diffusion theory models used to predict light propagation within the chamber. Tests of the instrument’s capacity to quantitatively reconstruct fluorochrome distributions in three dimensions showed less than 5% errors between actual fluorochrome concentrations and FMT findings, and suggested a detection threshold of approximately 100 femptomoles for small localized objects. Experiments to assess the instrument’s spatial resolution demonstrated the ability of the system to resolve objects placed at clear distances of less than 1 mm. This is a significant resolution increase over previously developed systems for animal imaging, and is primarily due to the large dataset employed and the use of inversion methods. Finally, the in vivoimaging capacity is showcased. It is expected that the large dataset collected can enable superior imaging of molecular probes in vivo and improve quantification of fluorescence signatures.

431 citations

Journal ArticleDOI
TL;DR: It is shown that tumor response to chemotherapy can be accurately resolved by fluorescence molecular tomography (FMT) with a phosphatidylserine-sensing fluorescent probe based on modified annexins, thus confirming tomographic imaging as a preferred tool for quantitative investigations of fluorescent probes in tissues.
Abstract: In vivo imaging of treatment responses at the molecular level could have a significant impact on the speed of drug discovery and ultimately lead to personalized medicine. Strong interest has been shown in developing quantitative fluorescence-based technologies with good molecular specificity and sensitivity for noninvasive 3D imaging through tissues and whole animals. We show herein that tumor response to chemotherapy can be accurately resolved by fluorescence molecular tomography (FMT) with a phosphatidylserine-sensing fluorescent probe based on modified annexins. We observed at least a 10-fold increase of fluorochrome concentration in cyclophosphamide-sensitive tumors and a 7-fold increase of resistant tumors compared with control studies. FMT is an optical imaging technique developed to overcome limitations of commonly used planar illumination methods and demonstrates higher quantification accuracy validated by histology. It is further shown that a 3-fold variation in background absorption heterogeneity may yield 100% errors in planar imaging but only 20% error in FMT, thus confirming tomographic imaging as a preferred tool for quantitative investigations of fluorescent probes in tissues. Tomographic approaches are found essential for small-animal optical imaging and are potentially well suited for clinical drug development and monitoring.

377 citations

Journal Article
TL;DR: The data indicate that serial administrations of CD8+ T cells appear to home to different intratumoral locations, and may provide a more effective treatment regimen than a single bolus administration, and that this approach may be particularly useful for evaluating novel cell-based therapies in vivo.
Abstract: Magnetic resonance imaging (MRI) allows noninvasive and three-dimensional visualization of whole organisms over time, and, therefore, would be ideally suited to monitor cell trafficking in vivo . Until now, systemically injected cells had been difficult to visualize by MRI because of relatively inefficient labeling methods. We developed a novel, biocompatible, and physiologically inert nanoparticle (highly derivatized cross-linked iron oxide nanoparticle; CLIO-HD) for highly efficient intracellular labeling of a variety of cell types that now allows in vivo MRI tracking of systemically injected cells at near single-cell resolution. CD8+ cytotoxic T lymphocytes labeled with CLIO-HD were detectable via MRI with a detection threshold of 2 cells/voxel in vitro and ∼3 cells/voxel in vivo in live mice. Using B16-OVA melanoma and CLIO-HD-labeled OVA-specific CD8+ T cells, we have demonstrated for the first time high resolution imaging of T-cell recruitment to intact tumors in vivo . We have revealed the extensive three-dimensional spatial heterogeneity of T-cell recruitment to target tumors and demonstrated a temporal regulation of T-cell recruitment within the tumor. Significantly, our data indicate that serial administrations of CD8+ T cells appear to home to different intratumoral locations, and may, therefore, provide a more effective treatment regimen than a single bolus administration. Together, these results demonstrate that CLIO-HD is uniquely suited for quantitative repetitive MRI of adoptively transferred cells and that this approach may be particularly useful for evaluating novel cell-based therapies in vivo .

366 citations

Journal ArticleDOI
TL;DR: Biopsy samples containing tumor were distinguished from those containing a mixture of normal, edematous, gliotic, and necrotic tissue with 90% sensitivity and 86% specificity by using a CNI threshold of 2.5.
Abstract: Object. Data obtained preoperatively from three-dimensional (3D)/proton magnetic resonance (MR) spectroscopy were compared with the results of histopathological assays of tissue biopsies obtained during surgery to verify the sensitivity and specificity of a choline-containing compound—N-acetylaspartate index (CNI) used to distinguish tumor from nontumorous tissue within T2 hyperintense and contrast-enhancing lesions of patients with untreated gliomas. The information gleaned from the biopsy correlation study was used to test the hypothesis that there is metabolically active tumor in nonenhancing regions of the T2-hyperintense lesion that can be detected using MR spectroscopy. Methods. Patients suspected of harboring a glioma underwent 3D MR spectroscopy during their preoperative MR imaging examination. Surgical navigation techniques were used to record the location of tissue biopsies collected during open resection of the tumor. A receiver operating curve analysis of the CNI and histological characteristi...

263 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors propose that persistent metabolism of glucose to lactate even in aerobic conditions is an adaptation to intermittent hypoxia in pre-malignant lesions, which leads to microenvironmental acidosis requiring evolution to phenotypes resistant to acid-induced cell toxicity.
Abstract: If carcinogenesis occurs by somatic evolution, then common components of the cancer phenotype result from active selection and must, therefore, confer a significant growth advantage. A near-universal property of primary and metastatic cancers is upregulation of glycolysis, resulting in increased glucose consumption, which can be observed with clinical tumour imaging. We propose that persistent metabolism of glucose to lactate even in aerobic conditions is an adaptation to intermittent hypoxia in pre-malignant lesions. However, upregulation of glycolysis leads to microenvironmental acidosis requiring evolution to phenotypes resistant to acid-induced cell toxicity. Subsequent cell populations with upregulated glycolysis and acid resistance have a powerful growth advantage, which promotes unconstrained proliferation and invasion.

4,361 citations

Journal ArticleDOI
TL;DR: Interest in the topic of tumour metabolism has waxed and waned over the past century, but it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Abstract: Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.

4,169 citations

Journal ArticleDOI
TL;DR: The data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer, which may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.
Abstract: Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.

3,473 citations

Book ChapterDOI
TL;DR: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed and the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed.
Abstract: The physical principles underlying some current biomedical applications of magnetic nanoparticles are reviewed. Starting from well-known basic concepts, and drawing on examples from biology and biomedicine, the relevant physics of magnetic materials and their responses to applied magnetic fields are surveyed. The way these properties are controlled and used is illustrated with reference to (i) magnetic separation of labelled cells and other biological entities; (ii) therapeutic drug, gene and radionuclide delivery; (iii) radio frequency methods for the catabolism of tumours via hyperthermia; and (iv) contrast enhancement agents for magnetic resonance imaging applications. Future prospects are also discussed.

2,815 citations

Journal ArticleDOI
03 Apr 2008-Nature
TL;DR: Advances in experimental and clinical imaging are likely to improve how cancer is understood at a systems level and should enable doctors not only to locate tumours but also to assess the activity of the biological processes within these tumours and to provide 'on the spot' treatment.
Abstract: New technologies for imaging molecules, particularly optical technologies, are increasingly being used to understand the complexity, diversity and in vivo behaviour of cancers. 'Omic' approaches are providing comprehensive 'snapshots' of biological indicators, or biomarkers, of cancer, but imaging can take this information a step further, showing the activity of these markers in vivo and how their location changes over time. Advances in experimental and clinical imaging are likely to improve how cancer is understood at a systems level and, ultimately, should enable doctors not only to locate tumours but also to assess the activity of the biological processes within these tumours and to provide 'on the spot' treatment.

2,135 citations