scispace - formally typeset
Search or ask a question
Author

Edward I. Solomon

Bio: Edward I. Solomon is an academic researcher from Stanford University. The author has contributed to research in topics: Active site & Copper. The author has an hindex of 88, co-authored 378 publications receiving 24414 citations. Previous affiliations of Edward I. Solomon include Princeton University & University of California, Davis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the 1s → 3d pre-edge features of high-spin ferrous and ferric model complexes in octahedral, tetrahedral, and square pyramidal environments were investigated and the allowable many-electron excited states were determined using ligand field theory.
Abstract: X-ray absorption Fe−K edge data on ferrous and ferric model complexes have been studied to establish a detailed understanding of the 1s → 3d pre-edge feature and its sensitivity to the electronic structure of the iron site. The energy position and splitting, and intensity distribution, of the pre-edge feature were found to vary systematically with spin state, oxidation state, geometry, and bridging ligation (for binuclear complexes). A methodology for interpreting the energy splitting and intensity distribution of the 1s → 3d pre-edge features was developed for high-spin ferrous and ferric complexes in octahedral, tetrahedral, and square pyramidal environments and low-spin ferrous and ferric complexes in octahedral environments. In each case, the allowable many-electron excited states were determined using ligand field theory. The energies of the excited states were calculated and compared to the energy splitting in the 1s → 3d pre-edge features. The relative intensities of electric quadrupole transitions...

1,181 citations

Journal ArticleDOI
TL;DR: It is speculated that structural differences in the substrate-activation site (a 'blue', type 1 copper center) control the redox potential range as well as substrate specificity, and the cystine content contributes to stability.

536 citations

Journal ArticleDOI
TL;DR: The oxygen intermediate of Cu-ZSM-5 is now the most well defined species active in the methane monooxygenase reaction, and the oxygen activated Cu core is uniquely defined as a bent mono-(μ-oxo)dicupric site.
Abstract: Driven by the depletion of crude oil, the direct oxidation of methane to methanol has been of considerable interest. Promising low-temperature activity of an oxygen-activated zeolite, Cu-ZSM-5, has recently been reported in this selective oxidation and the active site in this reaction correlates with an absorption feature at 22,700 cm−1. In the present study, this absorption band is used to selectively resonance enhance Raman vibrations of this active site. 18O2 labeling experiments allow definitive assignment of the observed vibrations and exclude all previously characterized copper-oxygen species for the active site. In combination with DFT and normal coordinate analysis calculations, the oxygen activated Cu core is uniquely defined as a bent mono-(μ-oxo)dicupric site. Spectroscopically validated electronic structure calculations show polarization of the low-lying singly-occupied molecular orbital of the [Cu2O]2+ core, which is directed into the zeolite channel, upon approach of CH4. This induces significant oxyl character into the bridging O atom leading to a low transition state energy consistent with experiment and explains why the bent mono-(μ-oxo)dicupric core is highly activated for H atom abstraction from CH4. The oxygen intermediate of Cu-ZSM-5 is now the most well defined species active in the methane monooxygenase reaction.

535 citations

Journal ArticleDOI
TL;DR: These studies show that the topology of the TNC provides a unique geometric and electronic structure particularly suited to carry out this key reaction in nature.
Abstract: In nature the four electron reduction of O2 to H2O is carried out by Cytochrome c oxidase (CcO) and the multicopper oxidases (MCOs). In the former, Cytochrome c provides electrons for pumping protons to produce a gradient for ATP synthesis, while in the MCOs the function is the oxidation of substrates, either organic or metal ions. In the MCOs the reduction of O2 is carried out at a trinuclear Cu cluster (TNC). Oxygen intermediates have been trapped which exhibit unique spectroscopic features that reflect novel geometric and electronic structures. These intermediates have both intact and cleaved O–O bonds, allowing the reductive cleavage of the O–O bond to be studied in detail both experimentally and computationally. These studies show that the topology of the TNC provides a unique geometric and electronic structure particularly suited to carry out this key reaction in nature.

306 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn, a multifunctional program for wavefunction analysis.
Abstract: Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com.

17,273 citations

Journal ArticleDOI
TL;DR: In this paper, the electron transfer reactions between ions and molecules in solution have been the subject of considerable experimental study during the past three decades, including charge transfer, photoelectric emission spectra, chemiluminescent electron transfer, and electron transfer through frozen media.

7,155 citations

Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers.
Abstract: Copper is an essential trace element in living systems, present in the parts per million concentration range. It is a key cofactor in a diverse array of biological oxidation-reduction reactions. These involve either outer-sphere electron transfer, as in the blue copper proteins and the Cu{sub A} site of cytochrome oxidase and nitrous oxide redutase, or inner-sphere electron transfer in the binding, activation, and reduction of dioxygen, superoxide, nitrite, and nitrous oxide. Copper sites have historically been divided into three classes based on their spectroscopic features, which reflect the geometric and electronic structure of the active site: type 1 (T1) or blue copper, type 2 (T2) or normal copper, and type 3 (T3) or coupled binuclear copper centers. 428 refs.

3,241 citations